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ABSTRACT  
 

In the past half-century, statisticians have recognized the improvement in efficiency of many inference problems as a result of 
implementing the prior ordering of parameters or restrictions in the analysis. As it is often the case that observations are not 
normally distributed and are sometimes observed in a cluster, generalized linear models (GLMs) or generalized linear mixed 
models (GLMMs) are employed.  The paper extends estimation and hypothesis testing methods for such models under inequality 
constraints using the Gradient Projection (GP) algorithm. Results of simulation studies and applications are also discussed. 
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RÉSUMÉ 
 
Au cours des dernières années, les statisticiens ont reconnu l'amélioration en précision des problèmes d'inférence lorsqu'on tient 
compte de l'ordre des paramètres ou de restrictions dans l'analyse. Souvent les données n'ont pas une distribution normale ou se 
retrouve en grappes, alors les modèles linéaires généralisés (GLM) ou linéaires généralisés mixtes (GLMM) sont utilisés. 
L'article examinera des méthodes d'estimation et de tests d'hypothèses de tels modèles sous des contraintes d'inégalité en 
appliquant l'algorithme de projection du gradient (GP). Les résultats de simulations et d'applications seront aussi discutés. 
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1. INTRODUCTION AND MOTIVATION 

 
Statistical modeling and analysis techniques for observational and experimental data often require methods to address a 
constrained parameter environment. Problems of such type may originate from various fields of study: an educator may 
wish to determine if levels of distraction varying from none to excessive during an examination result in scores in the 
reverse order of magnitude; a sociologist may examine if people in low, middle and high socio-economic groups possess 
low, middle and high knowledge of current events; and a National Hockey League (NHL) owner may be interested in 
determining whether selecting players with a high ranking in the Entry Draft will lead to improved team performance 
(Daniel, 1990 and Dawson and Magee, 2001). Hypotheses of this nature are referred to as ordered alternatives and are 
studied in the general area of order restricted, or constrained, statistical inference.  
 
The implementation of constraints in statistical analysis has been studied under various names, including one-sided 
testing, isotonic regression or restricted analysis. Advantages of using such constraints are that the restrictions are often 
natural, and allow for additional estimation and hypothesis tests; inference with constraints is often more efficient than 
unrestricted counterparts which ignore the constraints; and restricted ML estimation has also been shown to obtain 
consistent estimates of parameters in most cases. On the other hand, such constraints require additional algorithms which 
may be complex or inefficient in terms of computing time to implement; and algorithms are usually proposed for specific 
cases. The reader is asked to refer to the books by Silvapulle and Sen (2005) and Robertson, Wright and Dykstra (1988) 
for further details. 
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In a linear model (LM), the mean function is of a linear form ijµ = µ + iα + jβ , whereµ , iα  and jβ  are unknown 

constants for which interest lies in their estimation. If either the iα 's or jβ 's are random variables as opposed to fixed 

constants, the model is termed a linear mixed model (LMM). Normality of the random iα 's is also often assumed. 

However, in many statistical applications, it is not the case that the mean of an observation is a linear combination of 
parameters nor that data are normally distributed. To model such non-normal data, generalized linear models (GLMs) and 
generalized linear mixed models (GLMMs) are often employed.  
 
In particular, GLMMs are of importance to current statistical problems. Breslow and Clayton (1993) describe numerous 
applications including modeling of longitudinal data, overdispersion, spatial aggregation, etc. In effect, models are built to 
accommodate correlated data or to consider levels of a factor as selected from a population of levels in order to make 
inference to that population (McCulloch and Searle, 2001). Nevertheless, the addition of random effects into a generalized 
linear model complicates procedures for estimating the model parameters. McCulloch and Searle (2001) review a number 
of existing methods for analyzing mixed models. In essence, maximum likelihood estimation of parameters is preferred; 
however it is difficult and computationally intensive. 
 
Our motivation is to extend constrained inference to analyze problems of the following type: 

o Estimation of the effect of increasing age levels or ordered income levels on the probability of being a smoker 
o Observations are observed longitudinally or in clusters (e.g. schools, neighbourhoods) 

Hence, we are motivated to develop constrained inference techniques in GLMs and GLMMs for analyzing such nonlinear 
data.  
 
Constrained inferences have been considered in many papers, including Dykstra (1983), El Barmi and Dykstra (1994, 
1995), El Barmi and Johnson (2006) and Dardanoni and Forcina (1998). However, these papers have focused on 
inferences under the normal or multinomial setting. In the context of linear mixed models, relatively few authors have 
proposed algorithms for maximum likelihood (ML) estimation under inequality (Shi et al.(2005), Zheng et al.(2005)) or 
equality constraints (Kim and Taylor(1995)). Nevertheless, many of these algorithms concern a specific cone type of 
constraint (i.e. 0β ≤A ). In contrast, Jamshidian (2004) used the Gradient Projection (GP) algorithm for equality and 
inequality constraints in a general likelihood function with missing values and provided an example of this estimation 
method for linear mixed models. Given the general nature of this procedure, both in terms of linear inequality constraints 
and general likelihood function, we are motivated to apply these results to the nonlinear mixed model context. 
Furthermore, for hypothesis testing, Silvapulle (1994) considered the likelihood ratio test (LRT) for the GLM problem.  
 
The paper outlines an innovative method of maximum likelihood estimation for GLMs and GLMMs under linear 
inequality constraints, and assesses some relevant properties of the estimators. In addition, extensions to constrained 
likelihood ratio tests are discussed. The paper is organized as follows: Section 2 describes the models under study and 
background on the GP algorithm and its application to ML estimation and hypothesis testing. Section 3 offers results of a 
simulation study which investigates the properties of the constrained versus unconstrained estimators. Section 4 provides 
a summary and suggestions for future research. 
 

2.  MAXIMUM LIKELIHOOD ESTIMATION WITH INEQUALITY CONSTRAINTS 
 
In the case of a generalized linear model, we note that iµ , the mean of the response variable, iy , is related to the 

explanatory variables through the link function g( iµ ) = βtix . Assuming iy ~ indep. )( iY yf
i

, i = 1,2,…,n with 
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We note that the conditional mean of iy  is related to the natural or canonical parameter iθ by iii b θθµ ∂∂= /)( . 

Furthermore, it is often the case that the canonical parameter iθ is a linear function of the predictors and parameters as  

iθ  = g( iµ ) = βtix . For example, in the case of a Bernoulli distribution, we have iθ = g( iµ )= ))1/(log( ii µµ − .  
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The ML estimating equations for β  may then be derived as: 

,)( 0µyW∆X t =−  

where [ ]12 ))()(()( −== iii gvdiagwdiag µµ µW  and ))(( igdiag µµ=∆ , with 22 /)()( iii bv θθµ ∂∂=  and )( ig µµ  is the 

derivative of g( iµ ) with respect to iµ . For further details, the reader is referred to McCulloch and Searle (2001) or 

McCullagh and Nelder (1989).  
 
In the case of a generalized linear mixed model, we may augment the link function to account for the clustering and/or 

longitudinal aspect of the data with g( iµ ) = βtix + utiz   where u  is the vector of random effects which accounts for such 

correlation or overdispersion. Then, as before, we consider the conditional distribution u|iy  ~ indep. )|(| uiuY yf
i

, with 

[ ] )},(/)(exp{ 2
| ττθθ iiiiuY ycbyf
i

−−= and u ~ )|( Σuuf . For such models, we consider the marginal likelihood 

function, which is obtained by integrating over the random effects, 
 

∫=Σ |(),,( | iuy yfL
i

τβ u ) )|( Σuuf  du , 

 
However, many authors have noted that these high-dimensional integrals are difficult to calculate (see McCulloch and 
Searle (2001)). Numerous methods have been proposed in the literature to alleviate these computational difficulties by 
either approximating the integrals or the integrand under study. While penalized quasi-likelihood and generalized 
estimating equations have many practical advantages, these methods do not have the optimal properties of statistical 
efficiency as those of maximum likelihood estimation and may lead to inconsistent estimates in some cases. Thus, for 
both constrained and unconstrained ML estimation, we consider evaluating the integrals using numerical quadrature 
methods.  
 
In many practical situations, such as the binary and Poisson regression models, the dispersion parameterτ is fixed at unity. 
For the simulation study described in Section 3, we assumed τ = 1. However, in some situations, such as the gamma 
distribution, an estimating equation for τ  may be determined, using a similar technique. Algorithms for computing the 
constrained ML estimates of β  and Σ  are detailed in the next section.   

 
2.1. Gradient Projection Algorithm 
 
Consider inequality constraints of the form ≤βA c, where A is an r x p matrix of full rank r ≤  p, thus the constrained 
parameter space is =Ω {β : ≤βA  c}. The method proposed by Jamshidian (2004) implements the gradient projection 

(GP) algorithm which searches among all active sets (constraints which hold with equality) to determine the optimal 
solution. This method is globally convergent, and finds a solution to maximize the log-likelihood function )(βl or ),( Σβl  

subject to  

=βtia ic   ∈i 1I  

≤βtia ic   ∈i 2I , 

where 2I is the index set of the rows of A pertaining to inequality constraints, and 1I  is the index set for the rows of A 

corresponding to equality constraints. The algorithm begins with an initial working set of active constraints, denoted W. 

This set includes indexes of the constraints in 1I , if any, and may include indexes from 2I . Let A  be an m  x p matrix 

whose rows consist of t

ia for all ∈i W and let c be the corresponding vector of ic 's. Moreover, define the generalized 

gradient of )(βl or ),( Σβl  in the matrix of W* as )()(~ 1* βWβ ss −= where )(βs denotes the gradient vector and W* is the 

estimate of the information matrix defined on the next page.  
 

Beginning with an initial point rβ  that satisfies ≤βA  c , the algorithm proceeds as follows:  

1. Compute  d = *WP )(~ rs β , where *WP = AAAAI tt 111 )*(* −−−− WW .  

2. If d = 0, compute the Lagrange multipliers AAA t 11 )*( −−= Wλ )(~ rs β .  
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a. If iλ ≥ 0 for all ∈i W 2I∩ , stop. The current point satisfies the Kuhn-Tucker necessary conditions. 

b. If there is at least one iλ  < 0 for ∈i W 2I∩ , determine the index corresponding to the smallest such iλ  

and delete the index from W. Modify A and c by dropping a row from each accordingly and go to Step 1.  

3. If d = 0, obtain 1α = :{maxarg α
α

β +α d is feasible}. Then search for 2α = {maxarg
α

β(l +α d): 10 αα ≤≤ }. Set 

rβ
~

= rβ + 2α d. Add indexes of new coordinates, if any, of rβ that are newly on the boundary to the working set 

W. Modify A and c  by adding additional rows.  

4. Replace rβ by rβ
~

 and go to Step 1, continuing until convergence.  

 
For GLMs, we note the information matrix to be (See McCulloch and Searle (2001, p. 144): 
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while for the GLMM case, 
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where ∂=)(γU γγ ∂/)|( iyl , =γ (β , 2τ , 2σ )t. 
 

2.2. Likelihood Ratio Tests 
 
Once the maximum likelihood estimate is obtained, various hypothesis tests may be considered. First, define 

Ho: =βA c   

H1: ≤βA  c 

H2: β  unconstrained. 

 
Then, we may derive likelihood ratio tests (LRT) for the two hypotheses, as defined by Silvapulle and Sen (2005, p. 28): 
 

(T1) Ho  versus   H1 - Ho 

(T2) H1  versus  H2 - H1 (Goodness-of-fit test) 
 
The hypothesis test (T2) is termed a goodness-of-fit test for the constrained parameter space under study, and would 
usually be performed before (T1). Further, consider 


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where (T1*) and (T2*) represent (T1) and (T2) with c = 0. Silvapulle (1994) showed for the GLM case, that for (T1*):  
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where β̂  represents the unconstrained global MLE, and 0β  represents the true value under Ho.  

 
The asymptotic null distribution of the LRT follows a chi-bar-square distribution as follows: 
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For the goodness-of-fit test (T2*), as in Silvapulle and Sen (2005), we let H1 be satisfied, with 1β  denoting the true value 

in H1 that also belongs to Ho. Then we may show 
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The asymptotic least favourable null distribution of the LRT is also chi-bar-square as 
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where β  = 0 is the least favourable null value. 
 
As noted earlier, the chi-bar-square distributions are a weighted sum of chi-square distributions. The weights, ),( Vrwi , 

represent the probability that the least squares projection of r-dimensional normal observations from N(0,V) onto the 
orthant cone has exactly i positive component values. For a given information matrix, W*, these weights may be 
estimated via simulation after replacing 1β (or 0β ) and τ  by their unconstrained estimators (see Silvapulle and Sen 

(2005), sections 3.5 and 3.6).   
 

3. SIMULATION STUDY 
 

A simulation study was conducted to assess the bias and mean squared error (MSE) of the constrained and unconstrained 
estimates using the aforementioned methods. The constraints of interest and associated matrix are as follows: 
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Both Bernoulli and Poisson models for the GLM and GLMM case are considered. First, n = 100 observations were 

generated from Bernoulli( iπ ) where iπ  = exp( βtix )/(1+exp( βtix )). Similarly, n = 100 observations were generated from 

Poisson ( iλ ) where iλ  = exp( βtix ). The results for these cases are displayed in Tables 1 and 2 respectively. Furthermore, 

for the GLMM case, we assumed iu ~ i.i.d. N(0, 2σ ) .  In the Bernoulli GLMM, 2σ  = 1 and n = 200 clusters each of size 

k = 4 were generated from Bernoulli( ijπ ) with ijπ  = exp( i
t
ij ux +β )/(1+exp( i

t
ij ux +β )). For the Poisson GLMM,  

2σ  = 0.25, and n = 200 clusters each with size k = 4 were generated from Poisson ( ijλ ) where ijλ  = exp( i
t
ij ux +β ). The 

GLMM results are displayed in Tables 3 and 4, respectively. Note that for both Bernoulli and Poisson, we have τ  = 1. 
 

Moreover, for the GLMM case, as there are no restrictions placed on the 2σ parameter, the augmented matrices are needed 

A* = [A | 0],   =γ (β , 2σ )t. 

Also, X ~ U( ), 21 aa , where for Bernoulli we have 1a = -4.5, 2a = -2 and for Poisson, 1a = 1, 2a = 5. In addition, for 

Bernoulli we consider constraint values 1c  = 5, 2c  = -2 whereas for Poisson, 1c  = 1, 2c  = 0.5.  

 
The unconstrained estimation was performed using the software package R and associated functions glm() and glmmML(). 
For each simulation, three constraint cases were considered: (a) those beta values on the vertex point (e.g. 

β = t)50.1 ,50.3( ), (b) values on the boundary of the constraints or (c) values within the constraint cone. The empirical bias 

and MSE were then computed for each parameter case, in both the unconstrained and constrained settings. The simulation 
results are provided on the following page. 
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Table 1 – Bernoulli GLM Model 
 
  Constrained Unconstrained 

Case Parameter Bias MSE Bias MSE 

0β  = 3.50 -0.0318 0.0139 0.0962 2.4688 
(a) 

1β  = 1.50 -0.0650 0.0150 0.0361 0.5891 

0β  = 3.00 0.1055 0.0547 0.1075 1.1440 
(b) 

1β  = 1.00 0.0255 0.0091 0.0374 0.1067 

0β  = 3.90 -0.2072 0.1481 0.0873 1.2059 
(b) 

1β  = 1.10 -0.0642 0.0163 0.0255 0.1051 

0β  = 3.00 0.1149 0.1104 0.0188 1.2435 
(c) 

1β  = 0.70 0.0296 0.0144 0.0032 0.1060 

0β  = 3.90 -0.2090 0.1384 0.0350 0.6443 
(c) 

1β  = 0.90 -0.0623 0.0133 0.0106 0.0552 

Table 2 – Poisson GLM Model 
 
  Constrained Unconstrained 

Case Parameter Bias MSE Bias MSE 

0β  =  0.25 0.0072 0.0039 -0.0113 0.0083 
(a) 

1β  = 0.75 -0.0784 0.0137 0.0049 0.0261 

0β  =  1.30 -0.0786 0.0220 -0.0025 0.0398 
(b) 

1β  = -0.30 0.0210 0.0032 -0.0017 0.0049 

0β  = 0.15 0.0428 0.0056 -0.0063 0.0148 
(b) 

1β  = 0.65 -0.0095 0.0004 0.0014 0.0010 

0β  = 1.30 -0.0527 0.0349 0.0137 0.0615 
(c) 

1β  = -0.45 0.0127 0.0059 -0.0083 0.0090 

0β  = 0.35 -0.0276 0.0026 -0.0001 0.0115 
(c) 

1β  = 0.65 0.0067 0.0002 0.0002 0.0007 

 
 

Table 3 – Bernoulli GLMM Model 
 
  Constrained Unconstrained 

Case Parameter Bias MSE Bias MSE 

0β  = 3.50 -0.0102 0.0016 -0.0554 0.3509 

1β  = 1.50 -0.0216 0.0017 -0.0261 0.0849 (a) 

2σ = 1 0.0009 0.0036 -0.0317 0.0699 

0β  = 2.50 0.1309 0.0687 -0.0449 0.1555 

1β  = 0.50 0.0321 0.0062 -0.0167 0.0134 (b) 
2σ = 1 0.0256 0.0387 -0.0195 0.0811 

0β  = 4.00 -0.2118 0.1202 -0.0684 0.1989 

1β  = 1.00 -0.0613 0.0103 -0.0201 0.0169 (b) 
2σ = 1 -0.0561 0.0457 -0.0259 0.0828 

0β  = 2.65 0.1224 0.0382 -0.0558 0.1513 

1β  = 0.60 0.0317 0.0052 -0.0172 0.0126 (c) 
2σ = 1 -0.0587 0.0382 -0.1735 0.0911 

0β  = 4.00 -0.2184 0.1296 -0.0677 0.2299 

1β  = 0.90 -0.0629 0.0107 -0.0208 0.0182 (c) 
2σ = 1 -0.0627 0.0593 -0.0271 0.0906 

Table 4 – Poisson GLMM Model 
 

  Constrained Unconstrained 
Case Parameter Bias MSE Bias MSE 

0β  = 0.25 0.0400 0.0028 0.0541 0.0041 

1β  = 0.75 -0.0682 0.0071 -0.0689 0.0073 (a) 
2σ = 0.25 0.0065 0.0008 0.0056 0.0011 

0β  = 2.00 -0.0397 0.0033 0.0681 0.0158 

1β  = -1.00 0.0335 0.0023 -0.0074 0.0026 (b) 
2σ = 0.25 0.0101 0.0010 0.0485 0.0050 

0β  = -0.75 0.1433 0.0367 0.1135 0.0417 

1β  = -0.25 -0.0349 0.0037 -0.0291 0.0042 (b) 
2σ = 0.25 0.0315 0.0105 0.0569 0.0160 

0β  = -0.65 0.1276 0.0329 0.0987 0.0384 

1β  = -0.25 -0.0288 0.0030 -0.0216 0.0036 (c) 
2σ = 0.25 0.0386 0.0096 0.0530 0.0125 

0β  = -0.55 0.1169 0.0326 0.1064 0.0352 

1β  = -0.25 -0.0285 0.0032 -0.0257 0.0035 (c) 
2σ = 0.25 0.0488 0.0106 0.0527 0.0112 

 
From these results, it is evident that in many cases, the constrained estimates have larger bias than the unconstrained 
counterparts. However, the MSE for the constrained estimates is considerably less for all cases under study. In particular, 
when a given beta moves closer to the boundary points, the bias increases and MSE decreases for the constrained over the 
unconstrained estimates. Moreover, when comparing the two GLMM cases, we note a similar pattern of smaller MSE in 
the variance component analysis, despite no a priori constraints present. Hence, the estimation of the variance component 
is affected by imposing constraints on the regression parameters.  
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4. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK 
 

In this paper, we have described a method for calculating the ML estimates in generalized linear and generalized linear 
mixed models under constraints. Such methods have wide application in many statistical and non-statistical disciplines. 
The gradient projection algorithm is implemented to calculate maximum likelihood estimates under linear inequality 
constraints and resulting estimates exhibit smaller MSE than unconstrained counterparts. While larger bias and smaller 
MSE are typical properties of constrained estimators, development of methods for constrained likelihood ratio tests for the 
GLMM case is of interest. Power comparisons will be performed and an application to the Statistics Canada Youth 
Smoking Survey 2002 is planned. Future work would include extending these methods to constrained problems of general 
variance structures, and incomplete or survey sampling data.  
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