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A NEW METHOD OF ANALYZING CORRELATED GEOGRAPHICAL

’ ’ COHORT DATA
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 ABSTRACT

In 1997, the United States Environmental Protection Agency promulgated new regulations for annual average
concentrations of fine particulate matter in ambient air, based, in part, on the somewhat controversial epidemiological
evidence that people who lived in areas with elevated particulate levels have elevated mortality rates. This paper addresses
one of the most important issues in this controversy, the statistical analyses of the data. We present a new space-time model
linking spatial variation in ambient air pollution to mortality. The model incorporates risk factors measured at the
individual level, such as smoking, and at the spatial level, such as air pollution. We demonstrate that the spatial
autocorrelation in community mortality rates, an indication of not fully characterizing potentially confounding risk factors
to the air pollution mortality association, can be accounted for through the inclusion of location in the model assessing the
effects of air pollution on mortality. We present a statistical approach that can be implemented using widely available
statistical computer software. Our methods are illustrated with an analysis of the American Cancer Society cohort to

determine whether all cause mortality is associated with concentrations of sulfate particles.
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RESUME

En 1997, I"agence de protection de I’environnement des Etats-Unis promulguait une nouvelle réglementation sur les
moyennes annuelles de concentration de particules de matiéres fines dans 1’air ambiant, basé en partie, sur des évidences
épidémiologiques, quelque peu controversées indiquant que des personnes qui vivent dans des zones avec des niveaux
élevés de particules ont des taux de mortalité élevés. Cet article porte sur un des plus importants enjeux de cette
controverse, I’analyse statistique des données. Nous présentons un nouveau modeéle espace-temps liant les variations
spatiales de I’air pollué ambiant a la mortalité. Le modéle inclut les facteurs de risques mesurés au niveau individuel, tel
que la cigarette et au niveau spatial, tel que la pollution de I'air. Nous démontrons que 1’ auto-corrélation spatiale dans les
taux de mortalité des communautés, une indication de la non-caractérisation compléte des effets des facteurs de risques
potentiellement entremélés de I'association de la pollution de I’air avec la mortalité, peut étre tenue compte avec
I’inclusion des emplacements dans le modéle évaluant I’effet de la pollution de 1”air sur la mortalité. Nous présentons une
approche statistique qui peut-étre implanter en utilisant des progiciels statistiques courants. Notre méthode est illustrée
avec 1’analyse d’une cohorte de la Société Américaine du Cancer pour déterminer si les causes de mortalité sont associées
avec la concentration de particules de sulfate.

Mots Clé: I’air pollué; cohorte; épidémiologie; mortalité; particules de sulfate; regression spatiales; survie

1. INTRODUCTION based, in part, on the evidence that American citizens had

In 1997, the United States Environmental Protection
Agency (USEPA) promulgated new regulations for fine
particulate matter in ambient air. This decision was

an increased risk of cardiopulmonary mortality if they
lived in areas with elevated ambient fine particles as
compared to individuals who resided in less polluted
areas. Two of the key studies considered by the USEPA
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in this regard were that of Dockery and colleagues™ who
used data from the Harvard Six-cities study and Pope
and colleagues® who used data obtained from the
American Cancer Society Cancer Prevention II Study
(ACS)®. A number of criticisms of these two studies®
have been largely addressed in an extensive reanalysis®
conducted at the request of the Health Effects Institute,
Cambridge, MA.

In both of these cohort studies, subjects were enrolled
from communities with different levels of outdoor air
pollution. Subject-specific information on factors such
as age, gender, race, health status, tobacco use, alcohol
consumption, diet, occupational exposures, education,
and residence history were collected by the use of an
interview and questionnaire. Subjects were followed
over time to assess changes in their health and vital
status.  Air pollution was measured by fixed-site
monitors either prior to enrollment or during follow-up,
or both.

The standard Cox proportional hazard model used in
these two studies to relate longevity to exposure,
assumed that event information (time of death or
censoring due to end of study or loss to follow-up) was
statistically ~ independent among subjects after
controlling for available information on subject-specific
mortality risk factors. Such an approach results in at
least two, somewhat related concerns. First, health
responses can cluster by location”. Clustering will
cause a positive correlation of the response of subjects
in the same location and thus suggests that location is a
risk factor or that there are one or more unmeasured or
inadequately modeled risk factors specific to the
location itself. If this clustering is independent across
locations, failure to account for these “random effects”
should not result in biased estimates of effect but can
lead to an understatement of the uncertainty in these
estimates®?,

On one hand, clustering may not be entirely independent
or random across locations, so that the data are spatially
autocorrelated. That is, even after controlling for
various subject-specific risk factors, responses of
subjects living in communities close together may be
more similar than responses of subjects living in cities
farther apart. Failure to account for this type of spatial
autocorrelation can also lead to misstatement of the
uncertainty of the effect estimates®®. Furthermore, if
this spatial autocorrelation is due to missing or
systematically mis-measured risk factors that are also
spatially autocorrelated, then the estimates could be
biased. The direction and size of the bias will depend
upon the direction and degree of spatial autocorrelation

between the missing risk factors. For example, if there is
an important mortality risk factor that is negatively
spatially associated with particulate air pollution but
missing from the model, then the mortality estimates for
particulate air pollution will be biased downward, and the
converse is also true. Just as importantly, if the missing
risk factor is not spatially associated with particulate air
pollution then the estimate will not be biased, nor will
this cause spatial autocorrelation in the residuals of the
model.

In this paper we present a new statistical approach to deal
with these two related methodologic concerns. We
present a space-time random effects survival model that
links spatial variation in concentrations of ambient air
pollution to longevity of cohort subjects, after controlling
for temporal effects and individual risk factors for
mortality. We will use data from the original ACS
study® to demonstrate the impact of modeling random
location effects and spatial autocorrelation on the
estimated air pollution-mortality association and
estimates of uncertainty. These results are compared
with those obtained using standard methods of survival
analysis assuming statistical independence among
subjects.

2. THE SPACE-TIME MODEL

The response data, T, is the follow-up time defined as
the length of time (calendar or age) from the time of
enrollment into the study to the time of death or
censoring (due to termination of study or loss to follow-
up), for a subject in the [ #strata. Strata are typically
defined by individual characteristics such as gender and
age at enrollment. Mortality risk factor information is
available at both the individual level, denoted by the
vector X ©(r) which may vary with time ¢, and at the
spatial level, Z(s) , where s denotes an area in space. The
purpose of the analysis is to estimate the association
between spatial risk factors and longevity, after
controlling for relevant individual level risk factors such
as smoking and occupation. Spatial risk factors include
ambient air pollution, weather, and indicators of the
socio-economic status of the community. For the type of
epidemiological studies considered here, spatial areas are
typically defined in terms of census boundaries, such as
metropolitan statistical areas (MSAs).

We propose to analyze these data using a space-time
stochastic model which 1is characterized by the
instantaneous probability of death at time ¢, or hazard
function, for a subject residing in area s and a member of
stratum /. The hazard for our model is defined by
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Here, hé[)(t)is the baseline hazard function for the I®
strata, §(s)is the two-dimensional term to account for
residual spatial varability, PBis a vector of unknown
regression coefficients linking individual risk factors to
the hazard function, and g is a vector of unknown
regression coefficients linking the spatial level risk
factors to the hazard function. Covariate information
modulates the baseline hazard function with the
regression parameters fand yrepresenting the logarithm
of the relative risk of death per unit change in the
individual and spatial covariates, respectively.

The spatial random effects, n(s) , or frailties, are shared
by all individuals in area s. These random effects reflect
the difference between the observed hazard function and
the hazard function predicted from a statistical model.
We assume that the spatial process n{s)has zero
expectation, variance 0>0, and correlation matrix
Q(p)with dimension equal to the number of unique
observations in space, which is characterized by a vector
of unknown correlation parameters p. The
autocorrelation of the random effects between two areas
can be modeled by their distance apart, or some other
characteristic of their locations. The term
“autocorrelation” is used because we are dealing with
correlation in the same variable at different distances in
space. This process is similar to serial autocorrelation
in time series models. Autocorrelation models typically
assume that closer locations will have values of the
random effects that are more similar than random effect
values for locations farther apart. Thus, these models
are often characterized by functions that decrease
monotonically with distance?. Distance alone may not
fully describe the correlation structure. Distant
communities with similar population sizes, densities,
economic activity, and cultural traits may in fact be
more alike than more proximal areas. In the absence of
prior knowledge about processes that cause spatial
autocorrelation, distance-based relationships provide a
useful and reasonable metric for operationalizing
autocorrelation®?.

Variation at the spatial level (6) suggests that there is
some unexplained (unmeasured or not appropriately
modeled) information on mortality at the individual or
spatial level. Thus, space (or place location) can be
considered a risk factor for survival.

Spatial autocorrelation can be induced in non-infectious
health outcomes as a consequence of spatial
autocorrelation in mortality risk factors. As a first step,
both spatial variation and autocorrelation can be

accounted for by individual or spatial risk factors that
vary in space. Evidence of spatial autocorrelation in the
residuals of the model may indicate the need to account
for additional risk factors, which may potentially exert a
confounding effect on the air pollution mortality
association. An alternate approach to modeling this
additional risk factor information, which may be difficult
to implement, is to minimize the potential confounding
bias arising from spatial contiguous variation by
including a term that represents spatial trends J(s). With
large units of analysis such as metropolitan areas, the
total impact of these potentially numerous risk factors
may vary in a relatively smooth manner over space.
Spatial de-trending can remove autocorrelation between
geographic areas. In this approach, location and other
covariates, such as air pollution, which also vary in space,
compete in the regression model to predict mortality.
Thus, the regression coefficients give the effect of these
variables adjusted for each other. This approach is
analogous to that used in time series studies of mortality
and air pollution in which temporal trends in daily
mortality rates are jointly modeled with air pollution
levels®?.

3. STATISTICAL ESTIMATION AND
INFERENCE

3.1 The Time-Domain Model

We decompose the estimation procedure into two
domains: time and space. In the time domain we consider
the hazard model

-1 BT @
hé’)e {2;1 S(M(s)+f'x"} (2)

where {I(s), s=1,...,S-1} are indicator variables taking the
value 1 if the subject resides in area s and zero otherwise.
One area (S) is (arbitrarily) assigned as a reference. The
unknown parameters {8(s), s=1,..,S-1}represent the
logarithm of the relative risk of death for those subjects
living in area s compared to those subjects in the
reference area S, after controlling for the individual risk
factors x (7).

Our primary interest focuses on the regression and
dispersion parameters, rather than on the shape of the
baseline hazard function. In this approach, a procedure
has been selected in which the baseline hazard is treated
as a nuisance parameter, which need not be
parametrically specified or estimated. This approach
underlies the familiar class of Cox survival models®. We
obtain estimates of the area specific parameters, denoted
by {8(s)} , and estimates of their statistical uncertainty
using the Cox proportional hazards estimation routine
available in the statistical computing software package
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A limitation of this procedure is that the uncertainty of
the estimate of the reference area is not defined.
Because these values are based on comparisons with the
same reference area, they are correlated, and thus
increases the estimated uncertainty in the location-
specific log-relative risks {8(5)}. The induced
correlation can be removed by methods developed by
Easton and colleagues”®. This procedure eliminates the
covariance between the {S(s)}, and defines an
associated estimate of uncertainty to the assigned value
of zero for 8(s). If the covariance terms among the
{8(s)} are identical, taking the value c, for example, the
adjusted variance is obtained by subtracting ¢ from the
unadjusted variance, with the adjusted variance of
&(s) assigned the value c. The algebra and computer
programming effort to implement this adjustment
procedure is greatly simplified if the condition of
constant covariance of the {8(5)} holds. A practical
consequence of using this procedure is that we are able
to use standard statistical computer software for
statistical estimation and inference in the space-domain
model. We denote the adjusted statistical estimation
uncertainty in the {S(S)}by {v(s)}.

3.2 The Space-Domain Model

The space-domain model takes the form

8(5)=8(5) +Y7Z(s) +1(s) +&(s), 3)

where &(s)is a random process with zero expectation,
uncorrelated in space, and with variance v(s),
independent of the spatial random effects process n(s)
. Here, 6(s)has expectation p(s)=3(s)+y'Z(s) and
variance covariance matrix

> = 60Q(p)+V )

where V is a diagonal matrix with entries v(s). We
have decomposed the variance into a term representing
between subject variation within the same area, v(s) ,
and variation between areas, 0.

A practical limitation of this error model is that no
commercially available software accommodates this
stochastic structure (equation 4) when p#0. We can
remove much of this spatial autocorrelation by a
judicious choice of the spatial surface J(s). We
consider non-parametric smoothed estimates of S using
the robust locally-weighted regression (LOESS)
smoothers"” within the generalized additive model
framework®. This method can be implemented in the
statistical computing software package S-Plus”. The

unknown parameter vector ¥ linking the spatial risk

factors to the hazard function is also estimated using
generalized additive models in S-Plus.

For the case p=0, estimation of the space-domain model
can proceed by defining a weight function equal to the
inverse of the variance of each observation (i.e.
[6+v(s)]"!). However, using this approach requires that
an estimate, 8, of 6be obtained. Such an estimate is
given by the sample variance of the random effects,
S ’IE&:U n(s)z. However, the random effects {7(s)}are
not known and have to be estimated from the data by the
iterative procedure"®

ﬁ(s)(m+l) 6( )

—27 e[§(s) -
8 +u(s)

ROYs)] (5)

where ® represents the current value of the parameters
and ©+1represents the updated value. Substituting these
estimates of the random effects into the sample variance
yields a biased estimate of 6 (expectation of estimator
does not equal true value) because of the statistical
uncertainty in the estimated random effects. An unbiased
estimator of 6 is given instead by the iterative
procedure®

[é(m)] 2
é(w)

é(mq):é(m) +S [ﬁ(m)].?__ s (6)

P
+v(s)

where the last term in the above equation is a bias
correction representing the variance of the estimator of
the random effects. The estimation procedure is as
follows. First, estimate the unknown parameters in the
space-domain model (equation 3) using the generalized
additive model (GAM) estimation routing in S-Plus with
weights specified by v(s)™', yielding an initial prediction
function ©(s). Then determine a starting value for 8 by
the formula

50 2 {189 RO Pov(s)* (s) "}

PR

which is the penalized least squares estimator of 9 using
a Fishers scoring algorithm® with mean 2©(s) and
variance v(s). We then obtain updated estimates of the
random effects n(s) and their variance 6using equations
5 and 6, respectively. Given the current estimate of the
random effects variance we obtain updated estimates
("“”(s) using the GAM estimation routine with weights
[6 +v(s)] L This procedure is repeated until the
relative difference between consecutive estimates of 6 is
small (in our case <107%). Estimates of the other
parameters will not change if 6 does not change.

: )

The last issue that needs for be addressed is that the
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variances of ¥ are biased. This is because the GAM
estimation routine in S-Plus assumes a variance structure
of the form 8°[8+v(s)] , and provides an estimate of &*.
In contrast, our model assumes a vaniance of 6 +v(s). An
unbiased estimate of the standard error of §can be
obtained by dividing the standard error provided by the
S-Plus routine by the square root of the estimate of 2.

The approach described above yields unbiased and fully
efficient estimates of the unknown parameters within a
generalized estimating equation framework® if there is
in fact no spatial autocorrelation in the random effects.
We have developed a simple method to judiciously
select the appropriate span in the LOESS smoother so as
to minimize the autocorrelation structure of the random
effects. We do this by plotting the correlation of the
standardized estimates of the random effects

e |
ﬁ(S)[ - ) , 3)
0+v(s)

versus the distance between areas using the correlogram
function in the spatial module of S-Plus®®. We have
standardized the random effects based on their
estimation error to meet the assumption of constant
variance needed for this procedure. We also determine
the spatial autocorrelation of adjacent communities
using Moran’s 1 statistic also available in the spatial
module of S-Plus. Two areas are considered to be
adjacent, or nearest neighbors, if their respective
Thiessen polygons share coterminous boundaries. A
Thiessen polygon is an area surrounding a location such
that all points within the polygon are closer to the
specified location than any other location in the spatial
coverage.

We examine the sensitivity of the air pollution
association with mortality, the random effects variance,
spatial autocorrelation of adjacent communities, and the
relation of the spatial autocorrelation with distance
between communities to the complexity of the
specification of the spatial surface, as measured by the
span of the LOESS nonparametric smoother.

Our modeling approach is illustrated with an analysis of
the ACS data in the next section.

4. THE AMERICAN CANCER SOCIETY STUDY
OF AIR POLLUTION AND MORTALITY

Volunteers of the ACS enrolled over 1.2 million people
in September of 1982 throughout the United States.
Information on history of disease, demographic

characteristics, and mortality risk factors was obtained
from respondents. Vital status was monitored through the
end of 1989.

We obtained information on particulate sulfate levels
from the Aerometric Information Retrieval System
(AIRS) and the Inhalable Particle Network (IPN) for
1980 and 1981 for 144 Metropolitan Statistical Areas
(MSAs) in which ACS subjects were enrolled. Sulfates
are secondarily formed particulate aerosols originating
from sulfur dioxide emissions and are a major component
of fine particulate matter. The sulfate data from AIRS
was collected using glass fiber filters, which react in the
presence of sulfur dioxide and artifactually inflate the
sulfate concentration. The sulfate data obtained from the
IPN used teflon filters which are not subject to this
artifact problem. Both monitoring networks were
operating in 41 MSAs. We calibrated the AIRS sulfate
data to the IPN sulfate data using six linear regression
models with separate calibrations for three regions of the
county and two time periods [April-September and
October to March]®. Estimates of exposure were
obtained by averaging all available sulfate data from all
monitors located in a MSA for the years 1980 and 1981,
inclusive.

We examined the association between concentrations of
sulfate particles and longevity in 144 MSAs for white
members of the ACS cohort, totaling 509,292 subjects.
The mean age at enrollment was 56.7 years, 5% of
subjects were younger than 40 years, 5% were older than
75 years, and 56.3% of subjects were women. During
the course of the seven years of follow-up, 39,474 (7.8%)
subjects died. @ The mean concentration of sulfate
particles, corrected for the sulfur dioxide artifact, across
all 144 cities was 6.4 pg/m?, with a minimum value of
1.4 pg/m?, an interquartile range of 4.2 ug/m?>, and a
maximum value of 15.6 pg/m?>.

The first step in the analysis was to use the Cox
proportional hazards survival model (equation 2) to
identify all relevant individual covarates that were
associated with mortality, independent of the city in
which subjects lived (8(s)=0). As indicated above, this
assumes that all observations were statistically
independent. The baseline hazard function was stratified
by sex and 5-year age groups so that the nuisance
baseline hazard functions were estimated separately in
each stratum. Twenty risk factors were selected
including variables representing tobacco and alcohol
consumption, body mass index, education, martial status,
passive exposure to tobacco smoke, and exposure to some
air toxics®. We then added a set of indicator variables,
{I(s), s=1,..,S-1}, for each MSA with Greenville, South

137



Steubenville, OH

0.4}

PO
RS
__ 75 S
s

Z

et
SIS,
TR S S SIS LSS
o 0. S y o > SOSCSCS
l S S SIS
KA
RS
SN X

gilude, latitude, span
0.4-0.05 0 005 0.1

lo{ion

Los Angeles, CA *

a) Spatial representation of community-

specific mortality relative risk adjusted

for individual risk factors

0.4)

longitude, atitude, span

tof

b) Spatial representation of particulate
sulfate concentrations

Figure 1. Non-parametric smoothed surface of mortality by latitude and longitude, adjusted for
individual level covariates in American Cancer Society Study with smoothing parameter of 40 percent
(panel a). Non-parametric smoothed surface of particulate sulfate concentrations by latitude and
longitude with a smoothing parameter of 40 percent (panel b). Note, z-axis represents residuals from

generalized additive model.

Carolina, assigned the role as the reference area.
[Greenville had a sulfate concentration near the median
value.] The associated logarithm of the area-specific
relative risks {8(5)} (relative to Greenville) were
estimated using the Cox model, adjusted for individual
covariates. Then the variances of the {S(S)} were
adjusted by the methods of Easton and colleagues®.
We used the simplified version of the method because
the covariances of the {8(s)} were nearly identical.

In the next step, we visualized the spatial association
between mortality and sulfate particles using our space-
domain model (equation 3). Here, we regressed the
area-specific adjusted relative risks {S(S)} onto the (x,y)
coordinates defined by longitude and latitude of the 144
MSAs with a non-parametric smoothed spatial surface
&(Figure 1, panel a), excluding spatial covariate
information such as air pollution (i.e. Z(s)=0) using the
GAM. We use latitude and longitude for this
visualization step since these co-ordinate definitions are
more easily interpretable than the Cartesian (x,y) co-
ordinate specification. However, we use the Cartesian
used the simplified version of the method because the
covariances of the {S(S)} were nearly identical.

In the next step, we visualized the spatial association
between mortality and sulfate particles using our space-
domain model (equation 3). Here, we regressed the

area-specific adjusted relative risks {_8(5)} onto the (X,y)
coordinates defined by longitude and latitude of the 144
MSAs with a non-parametric smoothed spatial surface
@(Figure 1, panel a), excluding spatial covariate
information such as air pollution (i.e. Z(s)=0) using the
GAM. We use latitude and longitude for this
visualization step since these co-ordinate definitions are
more easily interpretable than the Cartesian (X,y) co-
ordinate specification. However, we use the Cartesian
co-ordinates in all other formal statistical analyses since
the examination of spatial autocorrelation usually relies
on Euclidian rather than angular distance measures. This
procedure produced a three-dimensional surface of
{8(s)} based on our space-domain model, after adjusting
for all individual level risk factors. The weighting
function {é+v(s)}“1was used in this step so that the
estimated spatial surface §(s)reflected the estimated
uncertainty in the data.

We found that adjusted mortality was elevated in the
Ohio Valley region south of Lake Erie, diminished

in the west and south, and moderately elevated in the
mountain states. We also used equation 3 to model
concentrations of sulfate particles but with no random
effects. The {&(s)}were replaced by the mean sulfate
concentrations for the 144 MSAs, with the weights
assigned to unity. The sulfate concentration surface was
also modeled by a LOESS smoother using the GAM.
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Figure 2. Correlation of standardized estimates of random effects by distance between
locations for space-domain model with no covariates (panel a), sulfate only (panel b) and

sulfate and location with smoothing parameter of 80 percent to 20 percent (panels c-i,
respectively). Horizontal line indicates zero values.

Modeled sulfate values centered by their mean
concentration are portrayed in panel b of Figure 1.
There is a corresponding elevation in concentrations of
sulfate particles in the Ohio Valley region, with much
lower concentrations in the west. However, sulfate
particles were also elevated all along the eastern
seaboard, a pattern not found in the analysis of relative

mortality risks. This visualization stage suggests,

however, that there is a positive association between the
two surfaces.

We then fit a space-domain model with no spatial
predictors and determined the standardized random
effects from this model. The association between the
autocorrelation of these standardized estimated random
effects (equation 8) and distance is graphically presented
in Figure 2 (panel a) using the correlogram function in
the Spatial Module of S-Plus®?. Autocorrelation peaks
at a value of 0.40 for communities 100km apart, declines
for distances under 1000km, then increases for distances
between 1000km and 1200km. No autocorrelation
pattern with distance is apparent for communities greater
than 1200km apart. This pattern could be due to the two
mortality peaks (see Figure 1, panel a). Communities
located in regions of elevated (diminished) mortality are
500-1200km away from communities in regions with
diminished (elevated) mortality.  The inclusion of
sulfate particulate matter into the space-domain model
dampens the autocorrelations (Figure 2, panel b) but the
pattern over distance remains the same compared to the

autocorrelation pattern observed using a model with

no spatial predictors. Thus sulfate concentrations
account for some, but not all, of the spatial
autocorrelation. Further inclusion of a non-
parametrically estimated surface with LOESS spans of
80, 70, 60, 50, 40, 30 and 20 percent (Figure 2, panels c-i
respectively) reduces the autocorrelation as the span of
the LOESS smoother decreases. [Estimates of starting
values for 6 were negative for spans less than 20 percent,
indicating the spatial surface was overfitting the data.]
However, the pattern with distance is similar for all
spans.

The sensitivity of the air pollution association with
mortality, vy, the random effects variance, 0, and the
spatial autocorrelation of adjacent communities to the
LOESS smoothing span are given in Table 1 for the
space-time model. The association between sulfates and
mortality decreases as the complexity of the surface
modeling increases (or decreasing span). The residual
variation between mortality rates, 8, in addition to the
spatial autocorrelation also decrease with increasing
modeling complexity.

5. DISCUSSION AND CONCLUSIONS

In previous studies using longitudinal cohort designs,
statistically significant associations between mortality
and combustion-related particulate air pollution as
measured by fine or sulfate particles have been
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Table 1. Sulfate Effect, random effects variance and spatial autocorrelation by
model type and span of LOESS smoother of location surface.

Sulfate Effect Relative Risk* Random Spatial
Model Type Span (%) (y) 95% Effects Autocorrelaton”
(standard Confidence Vaniance (6 ) (p-value)
error) Interval)
Cox NA 0.0118 1.051 NA NA
(0.00177) (1.036, 1.066)
Random NA 0.0125 1.055 0.0027 NA
Effect (0.00252) (1.033,1.077)
Cox
Space-Time 100 0.0127 1.055 0.0027 0.31
(0.00252) (1.033, 1.077) (<0.0001)
Space-Time 90 0.0106 1.046 0.0022 0.20
(0.00279) (1.022, 1.070) (<0.0001)
Space-Time 80 0.0106 1.046 0.0021 0.19
(0.00277) (1.022, 1.070) (<0.0001)
Space-Time 70 0.0102 1.044 0.0019 0.17
(0.00272) (1.021, 1.067) (<0.0001)
Space-Time 60 0.0093 1.040 0.0016 0.15
(0.00261) (1.018, 1.062) {0.0026)
Space-Time 50 0.0089 1.038 0.0013 0.13
(0.00253) (1.017, 1.060) (0.0089)
Space-Time 40 0.0085 1.036 0.001 0.10
(0.00245) (1.016, 1.058) (0.0334)
Space-Time 30 0.0085 1.036 0.0007 0.07
(0.00235) (1.017, 1.057) (0.1338)
Space-Time 20 0.0081 1.035 0.0003 0.04
(0.00219) (1.016, 1.053) (0.3670)

NA: not applicable.

*: Relative risk evaluated at interquartile range of sulfate concentrations (4.2 ug I m®).
+: Spatial autocorrelation of standardized random effects based on nearest neighbors using Moran’s I statistic.

observed’??Y. There are two related concerns about
these studies that are directly addressed in this paper.
The first concern is that in these studies the data were

analyzed using the standard Cox proportional hazard
survival model, with the implicit assumption that the
observations were statistically independent after
controlling for available information on mortality risk
factors®. If the assumption of statistical independence
is not valid, the uncertainty in the estimates of effect

may be understated”*®. The second concern is that
missing or systematically mis-measured risk factors that
may be correlated with air pollution could confound the
pollution-mortality association®.

With regards to the first concern, our space-time model
provides more accurate estimates of the uncertainty of
estimates of effect. Based on the analysis of the ACS
data, while our model gave similar sulfate-mortality

140



estimates as the standard Cox model, the standard errors
of these estimates were somewhat higher than those
from the standard Cox model (Table 1).

With regard to the second concern, we have observed a
pattern of spatial autocorrelation in mortality that cannot
be fully explained by ambient particulate sulfate
concentrations, even after controlling for a host of risk
factors measured at the individual level. We also found
that the association between air pollution and mortality
was somewhat sensitive to the specification of the
complexity of the spatial surface, with more complex
surface specifications resulting in lower estimates of the
sulfate effect. These results suggest that there may be
some confounding due to missing or systematically mis-
measured risk factors that are also spatially correlated
with pollution. One approach to deal with this potential
confounding problem is to model additional spatially
distributed risk factor data®, but one must be cautious in
the selection of these variables, which are often difficult
to model and interpret correctly. Furthermore, if the
relevant risk factors are not known a priori,
indiscriminate adding of spatially autocorrelated
variables may result in multicolinearity problems and/or
serious over-fitting of the models. An alternate
approach to minimize the potential confounding bias
arising from spatial contiguous variation is to directly
model spatial trends, as is done in our space-time model.

While it is difficult to determine with certainty the true
association between air pollution and mortality with this
type of study design and analysis, our space-time model
gives us a realistic way to evaluate how much of the air
pollution mortality effects could be explained by
missing or systematically miss-modeled risk factors that
may be spatially autocorrelated with both mortality and
pollution. For example, based on our modeling of the
ACS data, the estimated excess mortality risk associated
with a change of 4.2 pg/m3 in particulate sulfate
concentrations (the interquartile range of the data) was
5.5 percent (95 percent confidence interval 3.3-7.7)
without modeling of the spatial mortality surface. An
excess mortality risk of 3.5 percent (95 percent
confidence interval 1.6-5.3) was estimated based on a
joint estimate with a spatial surface model using a
LOESS span of 20 percent.

The above values provide a range in credible estimates
obtained from these data and analytical methods. The
larger estimate (5.5 percent per 4.2 pg/m?) should be
considered the more accurate one if the broader spatial
autocorrelation between mortality and pollution is in
fact due to differences in risk posed by different
pollution levels across regions. Evidence against this

interpretation is found in the presence of spatial
autocorrelation in the adjusted community-specific
relative mortality rates, even

after sulfates are included in the model, thus suggesting
there may be spatially distributed risk factors that have
not been fully accounted for, which may confound the
observed association between mortality and particulate
sulfates. The lower estimate (3.5 percent per 4.2
pg/m?), reflects a more micro-scale or within-region
association between these variables. This estimate
reflects the amount of smoothing used to reduce spatial
autocorrelation, both in terms of magnitude and relation
to distance. This lower estimate of effect is
conservative because any evidence of an association
between air pollution and mortality obtained by shared
broad-scale spatial patterns has been removed.

With regard to the second concern, we have observed a
pattern of spatial autocorrelation in mortality that cannot
be fully explained by ambient particulate sulfate
concentrations, even after controlling for a host of risk
factors measured at the individual level. We also found
that the association between air pollution and mortality
was somewhat sensitive to the specification of the
complexity of the spatial surface, with more complex
surface specifications resulting in lower estimates of the
sulfate effect. These results suggest that there may be

. some confounding due to missing or systematically mis-
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measured risk factors that are also spatially correlated
with pollution. One approach to deal with this potential
confounding problem is to model additional spatially
distributed risk factor data®, but one must be cautious in
the selection of these variables, which are often difficult
to model and interpret correctly. Furthermore, if the
relevant risk factors are not known a priori,
indiscriminate adding of spatially autocorrelated
variables may result in multicolinearity problems and/or
serious over-fitting of the models. An alternate
approach to minimize the potential confounding bias
arising from spatial contiguous variation is to directly
model spatial trends, as is done in our space-time model.

While it is difficult to determine with certainty the true
association between air pollution and mortality with this
type of study design and analysis, our space-time model
gives us a realistic way to evaluate how much of the air
pollution mortality effects could be explained by
missing or systematically miss-modeled risk factors that
may be spatially autocorrelated with both mortality and
pollution. For example, based on our modeling of the
ACS data, the estimated excess mortality risk associated
with a change of 4.2 pg/m?® in particulate sulfate
concentrations (the interquartile range of the data) was
5.5 percent (95 percent confidence interval 3.3-7.7)



without modeling of the spatial mortality surface. An
excess mortality risk of 3.5 percent (95 percent
confidence interval 1.6-5.3) was estimated based on a
joint estimate with a spatial surface model using a
LOESS span of 20 percent.

The above values provide a range in credible estimates
obtained from these data and analytical methods. The
larger estimate (5.5 percent per 4.2 ug/m?) should be
considered the more accurate one if the broader spatial
autocorrelation between mortality and pollution is in
fact due to differences in risk posed by different
pollution levels across regions. Evidence against this
interpretation is found in the presence of spatial
autocorrelation in the adjusted community-specific
relative mortality rates, even after sulfates are included
in the model, thus suggesting there may be spatially
distributed risk factors that have not been fully
accounted for, which may confound the observed
association between mortality and particulate sulfates.
The lower estimate (3.5 percent per 4.2 ug/m?>), reflects
a more micro-scale or within-region association between
these variables. This estimate reflects the amount of
smoothing used to reduce spatial autocorrelation, both in
terms of magnitude and relation to distance. This lower
estimate of effect is conservative because any evidence
of an association between air pollution and mortality
obtained by shared broad-scale spatial patterns has been
removed.

The observed association may be attenuated because
measures of air pollution are known to miss-represent
personal exposure. and may not even represent the
average of personal exposure for all cohort members
within a community. In addition, because location is
measured very precisely, further bias could occur
because the effect of a variable measured with large
error (i.e. air pollution) can be transferred to another
variable measured with small error (i.e. location)®?.

We have developed an alternate method for statistical
estimation and inference for our space-time random
effects model in which we exploited the fact that the
partial likelihood function used for parameter estimation
in the independent observation Cox Model can be
written in terms of a Poisson likelihood. We have
shown that our space-time model can also be written as
a random effects Poisson likelihood®. We then applied
the estimation methods of Ma®" for random effects
Poisson models to the suitability transformed space-time
model.

We then analyzed the ACS data with this alternative
approach without any surface modeling.  Here,
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¥=0.0125(standard error of 0.00252) and 9:0.0027,
values nearly identical to our two-domain estimation
procedure. 'The close correspondence with the two
approaches is likely due to the relatively large number of
deaths per location (average of 274 deaths per MSA).

We found that the estimates of the association between

the individual risk factors and mortality, B and their
estimates of uncertainty were nearly identical in the Cox
survival model and the random effects Cox survival
model, thus validating the use of the Cox model to
identify the set of individual risk factors for mortality.

There is a substantial computational advantage to
decomposing the estimation procedure into time and
space domains. However, if there are a few deaths per
location, estimates of the location-specific effects from
the time-domain model ( {3(5)}) are  poorly
characterized"®. Areas in which no deaths occurred
must be removed from the space-domain portion of the
analysis, a limitation not inherent with the Cox random
effects modeling approach. A limitation of the latter
method is the intensiveness of computer resources. For
example, for the ACS study this approach took 37 hours
of computing time on a SUN Microsystems ULTRA
ENTERPRISE 450 computer. In contrast, the space-
time modeling approach took only a few minutes.
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