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ROBUST IMPUTATION IN THE PRESENCE OF INFLUENTIAL UNITS IN SURVEYS
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ABSTRACT

Item nonresponse in surveys is often treated by some form of single imputation. In some cases, one faces the
problem of influential units in the sample. This problem is especially acute in business surveys that collect
economic variables whose distributions are highly skewed. In the presence of influential units, the classical
imputed estimators are approximately unbiased if the first moment of the imputation model is correctly specified
but they may be very unstable. Therefore, it is desirable to develop robust imputation methods that produce
biased but more stable imputed estimators, i.e., estimators whose mean square error is smaller than that of the
corresponding non-robust counterparts. In this paper, we consider three robust imputed estimators that rely on
an adaptative tuning constant. We present the results of a simulation that suggest that the proposed methods
perform well in terms of efficiency for a wide class of distributions.

KEY WORDS: item nonresponse, imputed estimator, adaptative tuning constant, influential unit.

RÉSUMÉ

La non-réponse partielle dans les enquêtes est souvent traitée par une forme ou une autre d’imputation sim-
ple. Dans certains cas, on est confronté au problème des unités d’échantillonnage influentes. Ce problème est
particulièrement aigu dans les enquêtes auprès des entreprises qui collectent des variables économiques dont les
distributions sont fortement asymétriques. En présence d’unités influentes, les estimateurs imputés classiques
sont approximativement sans biais si le premier moment du modèle d’imputation est correctement spécifié,
mais ils peuvent s’avérer très instables. Il est donc souhaitable de développer des méthodes d’imputation ro-
bustes qui produisent des estimateurs imputés biaisés mais plus stables, c’est-à-dire des estimateurs dont l’erreur
quadratique moyenne est inférieure à celle des estimateurs non robustes. Dans cet article, nous examinons trois
estimateurs d’imputation robustes qui reposent sur un seuil adaptatif. Nous présentons les résultats d’une sim-
ulation qui suggèrent que les méthodes proposées sont performantes en termes d’efficacité pour une large classe
de distributions.

MOTS CLÉS : non-réponse partielle, estimateur imputé, seuil adaptatif, unité influente.

1 INTRODUCTION

Many organizations worldwide, including national statistical offices (e.g., Statistics Canada), market research firms,
and polling organizations, conduct surveys to collect valuable information. The common issue of missing data due
to nonresponse poses a challenge in surveys, and without appropriate statistical treatment, point estimates may
be greatly affected by nonresponse bias. In this paper, we focus on the problem of item nonresponse, which is
typically treated by some form of imputation. In addition to missing values, some surveys suffer from the presence
of influential units in the set of responding units. The problem of influential units is especially acute in business
surveys as the distribution of economic variables tends to be highly skewed. A unit is said to be influential if its
inclusion or exclusion in the calculation of point estimates may have a drastic impact on their magnitude. At this
stage, we distinguish influential units, which are accurately recorded values and may represent other similar units
in the set of nonrespondents or in the non-sampled part of the population, from gross measurement errors, which
are typically identified and corrected during the data-editing stage.
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If the first moment of the imputation model is correctly specified, the resulting imputed estimator of a population
total is consistent for the true total. However, point estimators may be highly unstable when influential units
belong to the set of observed data. It is therefore desirable to develop robust estimators that exhibit a smaller
mean square error than their corresponding counterparts. This is achieved at the expense of introducing a bias.
Therefore, the treatment of influential units involves a bias-variance trade-off.

To cope with the problem of influential units, it may be tempting to select one of the many robust estimation
procedures (e.g., M -estimators) that have been developed in the context of infinite populations. However, as we
illustrate empirically in Section 3, the blind application of these methods to survey data may lead to unsatisfactory
results. Indeed, the classical robust methods use a fixed tuning constant, for instance c = 1.345 for M -estimators
based on the Huber function; see, e.g., Andersen (2008). While this is appropriate when the goal is to describe the
behavior of the inliers (i.e., the non-outliers), it may lead to deceiving results when the goal is to estimate a finite
population total/mean. A more sensible approach is to use a robust procedure based on an adaptative tuning
constant; i.e., a tuning constant that increases as the sample size and the population size increase to infinity.
The reason for opting for an adaptive tuning constant instead of a fixed tuning constant lies in the fact that as
the sample size increases, the variance of non-robust estimators decreases. In other words, non-robust estimators
become more stable, reducing the need for addressing influential cases.

In this paper, we consider the problem of influential units in the case of deterministic linear regression imputation.
We first discuss two naive methods for the treatment of influential values at the imputation stage. We illustrate
empirically that both methods are generally unsatisfactory. In Section 4, we describe three robust imputed
estimators that share a common feature: they are all based on an adaptative tuning constant. The first two rely
on the concept of conditional bias, which serves as an appropriate measure of influence in a finite population
setting (e.g., Beaumont et al., 2013). The third one uses an optimal tuning constant in the sense that it minimizes
the estimated mean square error of the robust estimator. In Section 5, we present the results of a simulation
study that assesses the performance of the proposed methods in terms of bias and efficiency for a wide class of
distributions. We make some final remarks in Section 6.

2 THE SETUP

Let U = {1, 2, . . . , i, . . . , N} denote a finite population of size N , and let S be a random sample of size n selected
from U according to a probability sampling design p (S). We are interested in estimating the population total,
ty =

∑
i∈U yi, of survey variable y. Let Ii be a sample selection indicator attached to unit i, such that Ii = 1 if

i ∈ S, and Ii = 0, otherwise. Let πi = p (Ii = 1) denote the first-order inclusion probability attached to unit i
and let πij = p (Ii = 1, Ij = 1) denote the second-order inclusion probability for units i and j, i ̸= j. A full sample
estimator of ty is the Horvitz–Thompson estimator (Horvitz and Thompson, 1952) given by

t̂y,π =
∑
i∈S

yi
πi

=
∑
i∈S

wiyi, (1)

where wi = 1/πi denotes the sampling (or basic) weight assigned to unit i. In practice, the y-variable may be
prone to missing values. Let ri be a response indicator attached to unit i such that ri = 1 if yi is observed, and
ri = 0 if yi is missing. Let Sr = {i ∈ S; ri = 1} denote the set of responding units to the survey variable y, and
let Sm = S − Sr denote the set of nonresponding units. In this paper, we assume that the data are Missing At
Random (Rubin, 1976):

pi ≡ p(ri = 1|vi, yi) = p(ri = 1|vi),

where vi is a vector of fully observed variables associated with unit i. An estimator of ty after imputation, called
an imputed estimator, is defined as

t̂y,I =
∑
i∈S

wiriyi +
∑
i∈S

wi(1− ri)y
∗
i , (2)

where y∗i denotes the imputed value for the missing yi. In this paper, we consider deterministic linear regression
imputation. The underlying imputation model is thus given by

yi = v⊤
i β + ϵi, (3)
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such that
E(ϵi | vi) = 0,E(ϵiϵj | vi,vj) = 0, i ̸= j and V(ϵi | vi) = σ2ϕi.

In (3), β is a vector of unknown parameters, ϵi is a random error associated with unit i, σ2 is an unknown
parameter, and ϕi is a known positive constant attached to unit i. An estimator of β based on the responding
units is the weighted least squares estimator given by

B̂WLS =

(∑
i∈S

wiriviϕ
−1
i v⊤

i

)−1∑
i∈S

wiriviϕ
−1
i yi. (4)

The imputed values are given by y∗i = v⊤
i B̂WLS, i ∈ Sm. The resulting imputed estimator of ty is thus given by

t̂I,WLS =
∑
i∈S

wiriyi +
∑
i∈S

wi(1− ri)v
⊤
i B̂WLS. (5)

If the first moment of the imputation model (3) is correctly specified, we have EmEpEq(t̂I,WLS − ty) = 0, where
Em(.), Ep(.), and Eq(.), denote the expectation with respect to the imputation model, the sampling design and
the nonresponse mechanism, respectively. However, t̂I,WLS may be very inefficient in the presence of influential
units.

3 NAIVE METHODS

A first approach for tackling the influential units is to replace the weighted least squares estimator B̂WLS by a
robust version B̂R(c), where c denotes a tuning constant, whose role is to adjust the resistance of the estimator.
For instance, one may use an M -estimator based on the Huber function, in which case B̂R(c) is solution of the
following estimating equation: ∑

i∈Sr

wiψc

(
yi − v⊤

i β√
ϕiσ̂

)
vi√
ϕi

= 0, (6)

where ψc(·) is the so-called Huber function such that ψc(t) = t if |t| ≤ c and ψc(t) = sgn(t)c if |t| > c. With the
Huber function, the standard tuning constant is set to 1.345 as it produces a relative efficiency of approximately
95% if the data are normally distributed. The resulting imputed values are given by y∗i = v⊤

i B̂R(c), i ∈ Sm. It
follows that a robust estimator of ty is given by

t̂I,R(c) =
∑
i∈S

wiriyi +
∑
i∈S

wi(1− ri)v
⊤
i B̂R (c) . (7)

Other ψ-functions can be used; e.g., Biweight and Andrew, etc. Also, alternative robust estimators may be used;
e.g., S-estimators, MM-estimators and LTS estimators. The reader is referred to Andersen (2008) for more details
on robust regression methods.

A second approach consists of identifying the influential units (using an outlier detection method), removing these
units and obtaining the imputed values by fitting the customary linear regression model based on the remaining
responding units. This leads to y∗i = v⊤

i B̂
∗
WLS , i ∈ Sm, where

B̂
∗
WLS =

(∑
i∈S

wiriaiviϕ
−1
i v⊤

i

)−1∑
i∈S

wiriaiviϕ
−1
i yi, (8)

with ai = 1 if unit i is not discarded and ai = 0, if unit i is discarded. The imputed estimator is then given by

t̂∗I,WLS =
∑
i∈S

wiriyi +
∑
i∈S

wi(1− ri)v
⊤
i B̂

∗
WLS . (9)

To assess the performance of the above approaches, we conducted a limited simulation study. We repeated
R = 10, 000 iterations of the following process: (1) A population U of size N = 10, 000 was generated, consisting
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of a survey variable Y and one covariate V , using a mixture of normal distributions with a proportion of outliers
equal to 5%: Yi = 0.95 × N (µ1i;σ

2
1i) + 0.05 × N (µ2i;σ

2
2i). To that end, we generated the variable V from a

Gamma distribution with shape parameter equal to 1 and scale parameter equal to 10. For the distribution with
asymmetric outliers, we set µ1i = 1000 + 5vi, µ2i = 9000 + 20vi, σ

2
1i = 19600vi, and σ22i = 640000vi. For the

distribution with symmetric outliers, we set µ1i = 100 + 8vi, µ2i = 100 + 8vi, σ
2
1i = 64vi, and σ22i = 14400vi.

(2) A sample S of size n = 100; 200; 500, was selected from U according to simple random sampling without
replacement; (3) Nonresponse to the Y -variable was generated according to a uniform nonresponse mechanism
such that pi = 0.5 for all i; (4) In each sample, we computed three imputed estimators given by (5), (7) and (9).
For the estimator (7), we used an M -estimator based on the Huber function with c = 1.345. To compute (9), we
first needed to detect the outliers. To that end, we used two outlier detection methods: the method based on the
Cook distance with threshold c = 4/(n− 3) and the method based on studentized residuals with c = 2; 2.5; 3.
As a measure of the bias of an estimator, we computed its Monte Carlo percent relative bias, defined as RBMC =
1
R

∑R
r=1

{(
t̂
(r)
I − ty

)
/ty

}
×100, where t̂I is a generic notation used to denote an imputed estimator of ty. As a mea-

sure of efficiency, we computed the Monte Carlo percent relative efficiency (RE), using the non-robust estimator

t̂I,WLS , as the reference: RE = 100×
{
MSEMC(t̂I)/MSEMC(t̂I,WLS)

}
, where MSEMC(t̂I) =

1
R

∑R
r=1

(
t̂
(r)
I − ty

)2
.

The results are shown in Table 1 for symmetric outliers, and in Table 2 for asymmetric outliers.

Figure 1: Data generated from a mixture distribution with asymmetric outliers (on the left) and symmetric outliers
(on the right)

From Table 1, we note that both approaches behaved very well in terms of bias and efficiency. Indeed, all
the estimators exhibited negligible values of RB and values of RE ranging from 53 to 57. However, in the
case of asymmetric outliers (see Table 2), both approaches worked well in some scenarios but their performance
deteriorated considerably for n = 200 and n = 500. For both sample sizes, both approaches led to significant
bias and values of RE larger than 100, which is undesirable. For the approach based on robust regression, the
bad performance of the imputed estimator can be explained by the fact that the tuning constant c = 1.345
was fixed and not adaptative. This approach is appropriate in the classical setup, whereby the interest lies in
describing the behavior of the inliers. In survey sampling, the goal is different, as the interest lies in estimating
the overall population total that consists of a mix of outliers and inliers. As a result, the tuning constant c should
be adaptative in the sense that c should increase as n increases. Finally, for the approach based on weighted least
squares regression after removing outliers, the bad performance of the imputed estimator can be explained by
the fact it relies on the assumption that the discarded respondent y-values are unique, i.e., they do not represent
similar units in the non-responding set. In general, this assumption is not tenable.
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WLS Robust regression
WLS

(Exclude outliers)

n c = 0.1 c = 1.345 c = 2.5
Studentized

c = 2
Studentized
c = 2.5

Studentized
c = 3

Cook distance

100
0.0
(100)

0.0
(54)

0.0
(55)

0.0
(57)

0.0
(54)

0.0
(55)

-0.0
(57)

-0.0
(56)

200
-0.1
(100)

-0.0
(54)

-0.0
(55)

-0.1
(57)

-0.0
(53)

-0.1
(55)

-0.1
(57)

-0.1
(55)

500
-0.0
(100)

-0.0
(54)

-0.0
(54)

-0.0
(56)

-0.0
(53)

-0.0
(54)

-0.0
(56)

-0.0
(54)

Table 1: Percent relative bias and relative efficiency of several estimators in the case of symmetric outliers

WLS Robust regression
WLS

(Exclude outliers)

n c = 0.1 c = 1.345 c = 2.5
Studentized

c = 2
Studentized
c = 2.5

Studentized
c = 3

Cook distance

100
0.0

(100)
-13.0
(77)

-12.7
(75)

-11.9
(74)

-10.7
(87)

-9.6
(89)

-8.6
(92)

-8.6
(92)

200
-0.0
(100)

-13.0
(122)

-12.7
(118)

-12.0
(112)

-10.2
(117)

-8.9
(114)

-7.7
(111)

-7.9
(114)

500
0.0

(100)
-13.1
(267)

-12.8
(256)

-12.1
(235)

-9.7
(204)

-8.1
(177)

-6.6
(156)

-6.9
(167)

Table 2: Percent relative bias and relative efficiency of several estimators in the case of asymmetric outliers

4 PROPOSED APPROACHES

In this section, we describe three robust approaches that share a common feature: they all use an adaptative tuning
constant. The first two approaches are based on the concept of conditional bias, which is a measure of influence.
The last approach consists of determining the tuning constant that minimizes the estimated mean square error of
the imputed estimator.

4.1 Conditional Bias

The conditional bias is an appropriate measure to quantify the influence (or impact) of a unit in a finite population
setting. The conditional bias of the responding unit i is defined asBI

i = EmEpEq (tI,WLS − ty|Yi = yi, Ii = 1, ri = 1).
It can be shown that BI

i can be approximated by

BI
i ≈

∑
j∈U

(
πij − πiπj
πiπj

)
yj + wiCviϕ

−1
i

(
yi − v⊤

i β
)
, (10)

where C =
{∑

i∈U (1− pi)v
⊤
i

}{∑
i∈U piviϕ

−1
i v⊤

i

}−1
. The first term on the right hand-side of (10) measures the

influence of unit i on the sampling error t̂y,π − ty, whereas the second term measures the influence of unit i on the
nonresponse error, t̂I,WLS − t̂y,π. Under simple linear regression imputation (i.e., vi = (1, vi)

⊤ and ϕi = 1) and
simple random sampling without replacement, an estimator of the conditional bias is given by

B̂I
i ≈

(
N

n
− 1

)
(yi − yI) +

(
N

n

)
1

p̂

{
(1− p̂) +

(vi − vr)(v − vr)

s2vr

}(
yi − B̂0,WLS − B̂1,WLSvi

)
, (11)

where yI = t̂I,WLS/N , p̂ = nr/n, and s
2
vr = (nr − 1)−1

∑
i∈Sr

(vi − vr)
2. Thus, the responding unit i has a large

influence if (1) the sampling fraction n/N is small; (2) Its y-value is far from the overall estimated mean yI ; (3)
The response rate p̂ is low; (4) Its v-value is far from the mean of respondents vr (which may indicate a high
leverage point); (5) It has a large vertical residual: yi − B̂0,WLS − B̂1,WLSvi.
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4.2 Three robust approaches

In this section, we consider three robust estimators of ty that all rely on an adaptative tuning constant. As a
result, the three estimators converge to the non-robust estimator t̂I,WLS as the sample size and the population
size increase.

Following Beaumont et al. (2013) and Chen et al. (2020), we first consider a robust version of t̂I,WLS (5) based
on the concept of conditional bias:

t̂I,CB(c) = t̂I,WLS +∆(c), (12)

where c denotes a tuning constant. As in Beaumont et al. (2013) and Chen et al. (2020), we select the value of c

that minimizes max
i∈Sr

∣∣∣B̂R
i

∣∣∣, where B̂R
i is the conditional bias of unit i with respect to the robust estimator t̂I,CB(c).

The resulting estimator is given by

t̂I,CB(copt) = t̂I,WLS − 1

2

[
min
i∈Sr

{
B̂I

i

}
+max

i∈Sr

{
B̂I

i

}]
, (13)

where, if needed, the value copt may be obtained by solving

∆(c) = −1

2

[
min
i∈Sr

{
B̂I

i

}
+max

i∈Sr

{
B̂I

i

}]
.

A second robust estimator is obtained by estimating β in (3) using an M -estimator based on the Huber function
with the following tuning constant:

cnew = 1.345

{
1 +

∣∣∣∣min
i∈Sr

{
B̂∗

i

}
+max

i∈Sr

{
B̂∗

i

}∣∣∣∣ /2}+
n

N

√
n, (14)

where B̂∗
i denotes the standardized version of B̂I

i , obtained by the subtracting the average of the B̂I
i ’s and dividing

by their standard deviation. A robust estimator of ty is thus given by

t̂I,R(cnew) =
∑
i∈S

wiv
⊤
i B̂R(cnew), (15)

which is written in the so-called projection form. Why not use

t̂I,R(cnew) =
∑
i∈Sr

wiyi +
∑
i∈Sm

wiv
⊤
i B̂R(cnew). (16)

instead? The answer to this question is that, in (16), we are only ”taking care” of the missing values and not the
y-values observed for the respondents, some of which may be influential.

The rationale behind the choice of cnew is as follows. First, consider the case of a negligible sampling fraction
n/N . In this case, the second term on the right-hand side of (14) is negligible. Now, suppose that the distribution

has symmetric outliers and the weights wi are constant. In this case, we expect

∣∣∣∣min
i∈Sr

{
B̂∗

i

}
+max

i∈Sr

{
B̂∗

i

}∣∣∣∣ /2 to

be close to 0. Thus, cnew will essentially be equal to 1.345, which is a desirable feature (see Section 3). If the

distribution has asymmetric outliers (say to the right), the term

∣∣∣∣min
i∈Sr

{
B̂∗

i

}
+max

i∈Sr

{
B̂∗

i

}∣∣∣∣ /2 will be larger than

0, which implies that cnew will be larger than 1.345. Second, as the sample size n gets larger, the second term on
the right-hand side of (14) increases and B̂R(cnew) gets increasingly closer to B̂WLS.

For the third proposal, we determine the optimal tuning constant c∗ that minimizes the estimated mean square
error of the robust estimator, which leads to

t̂I,R(c
∗) =

∑
i∈S

wiv
⊤
i B̂R(c

∗). (17)
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The estimated mean squared error of t̂I,R(c) =
∑

i∈S wiv
⊤
i B̂R(c) is given by

M̂SE(t̂(B̂R, σ, c)) = max

{
0,
(
t̂(B̂R, σ, c)− t̂I,WLS

)2
− V̂

(
t̂(B̂R, σ, c)− t̂I,WLS

)}
+ V̂

{
t̂(B̂R, σ, c)

}
. (18)

In practice, this involves computing the estimated mean square error of t̂I,R(c) for a grid of c-values and selecting
the one that minimizes (18). The explicit expressions (and their derivations) for the terms on the right-hand side
of (18), are given in the Appendix.

5 SIMULATION STUDY

We conducted a simulation study to assess the performance of the proposed estimators. We repeated R = 10, 000
iterations of the following process: (i) A finite population U, of sizeN = 5, 000 was generated, with a survey variable
Y and a single covariate V . To that end, we generated V from a Gamma distribution with shape parameter equal
to 5 and scale parameter equal to 10. Given the v-values, the y-values were generated according to the following
model:

yi | vi ∼ D(µi;σ
2),

where µi = β0 + β1vi. We used the following distributions D: Normal, Lognormal, Pareto, Frechet, Student and
Double exponential (Laplace). The values of β0, β1 and σ were set to 50, 12, and 600, respectively. This led to
identical first two moments for all the distributions. We also considered mixture distributions with approximately
1% and 3% of outliers: Yi = αi × D(µ1i;σ

2
1i) + (1− αi) × D(µ2i;σ

2
2i), where P (αi = 1) = 0.99 or 0.97. For

mixtures of normal distributions, we set µ1i = 150 + 20vi, µ2i = 2000 + 85vi, σ1 = 400 and σ2 = 2000. For
mixtures of log-normal distributions, we set µ1i = 150+8vi, µ2i = 1200+60vi, σ1 = 150 and σ2 = 1500; (ii) From
U generated in Step (i), we selected a sample of size n ∈ {50, 100, 200} , according to simple random sampling
without replacement; (iii) In each sample, nonresponse to the y-variable was generated with probability

pi = 0.1 + 0.9
exp (4− 0.09vi)

1 + exp (4− 0.09vi)
.

This led to a response rate approximately equal to 50%; (iv) In each sample, we computed the non-robust estimator
(5), the naive estimator (7) with c = 1.345, the three proposed estimators given by (13), (15) and (17), as well
as the (unfeasible) robust estimator t̂I,R(c̃) based on a tuning constant c̃ that minimizes its Monte Carlo mean
square error. The latter can be viewed as a "gold standard".

n
t̂I,WLS t̂I,R(1.345) t̂I,CB(copt) t̂I,R(cnew) t̂I,R(c

∗) t̂I,R(c̃)

50 100 200 50 100 200 50 100 200 50 100 200 50 100 200 50 100 200

Normal
0.2 -0.2 0.1 0.2 -0.2 0.1 -0.1 -0.4 -0.1 0.4 0.0 0.1 0.1 -0.3 0.0 0.2 -0.2 0.1

(100) (100) (100) (103) (103) (102) (101) (100) (100) (102) (101) (100) (106) (105) (103) (100) (100) (100)

Student
0.1 0.0 -0.1 0.0 -0.1 -0.1 -0.1 -0.2 -0.2 0.4 0.3 0.1 -0.0 -0.1 -0.1 0.1 0.0 0.0

(100) (100) (100) (69) (68) (66) (83) (82) (83) (75) (73) (74) (68) (65) (64) (60) (57) (55)

Laplace
-0.2 0.0 0.1 -0.1 0.0 0.1 -0.4 -0.2 -0.1 0.2 0.3 0.2 -0.3 -0.1 0.1 -0.2 0.0 0.2
(100) (100) (100) (85) (82) (81) (93) (93) (95) (90) (90) (92) (82) (80) (80) (76) (68) (65)

Pareto
0.2 -0.1 0.1 -7.9 -8.6 -8.7 -3.4 -3.1 -2.3 -6.3 -5.5 -4.1 -6.9 -5.4 -4.0 -7.1 -4.8 -3.1

(100) (100) (100) (50) (58) (93) (70) (64) (69) (50) (45) (54) (63) (52) (58) (50) (45) (53)

Frechet
-0.3 0.1 0.0 -7.8 -8.2 -8.5 -3.8 -2.9 -2.2 -6.6 -5.4 -4.1 -7.8 -5.4 -4.0 -6.5 -4.7 -3.0
(100) (100) (100) (55) (69) (102) (70) (73) (76) (52) (60) (67) (59) (67) (70) (51) (58) (63)

Lognormal
-0.2 0.2 0.0 -8.4 -8.9 -9.3 -3.8 -2.7 -1.9 -6.6 -5.1 -3.4 -7.8 -5.0 -3.3 -6.9 -3.9 -2.4
(100) (100) (100) (79) (95) (134) (88) (90) (94) (83) (88) (94) (90) (92) (96) (83) (86) (91)

Weibull
-0.3 0.1 0.1 -7.0 -7.4 -7.7 -3.3 -2.0 -1.2 -5.9 -4.6 -3.0 -6.6 -3.8 -2.2 -2.8 -1.3 -0.5
(100) (100) (100) (92) (111) (141) (95) (98) (98) (91) (103) (102) (95) (101) (100) (91) (98) (97)

Mixture of Normals
(1 %)

0.2 -0.1 0.0 -1.9 -2.2 -2.1 -1.3 -1.5 -1.3 -2.4 -2.6 -2.2 -3.0 -3.2 -2.9 -3.3 -3.4 -2.7
(100) (100) (100) (50) (51) (53) (74) (71) (73) (53) (53) (58) (58) (57) (60) (46) (50) (55)

Mixture of Normals
(3%)

0.0 -0.1 0.1 -5.8 -5.9 -5.9 -3.2 -3.1 -2.5 -7.2 -7.0 -5.9 -7.7 -7.0 -5.6 -10.0 -7.6 -5.4
(100) (100) (100) (38) (45) (58) (72) (73) (79) (50) (55) (70) (66) (73) (83) (41) (54) (67)

Mixture of Lognormals
(1%)

0.0 0.0 -0.1 -3.9 -4.1 -4.2 -2.4 -2.4 -2.2 -5.2 -4.9 -4.5 -5.9 -5.6 -4.9 -5.6 -5.0 4.1
(100) (100) (100) (30) (33) (43) (61) (60) (64) (29) (32) (42) (43) (39) (48) (26) (30) (41)

Mixture of Lognormals
(3%)

-0.1 0.3 0.0 -9.4 -9.5 -9.6 -5.0 -4.4 -3.9 -12.6 -12.2 -11.1 -11.5 -10.9 -10.1 -15.0 -12.6 -9.4
(100) (100) (100) (27) (36) (60) (67) (69) (76) (38) (48) (74) (67) (72) (78) (33) (50) (71)

Table 3: Monte Carlo percent relative bias and Monte Carlo relative efficiency (in parentheses) of several estimators
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Table 3 displays the Monte Carlo percent relative bias and the Monte Carlo percent relative efficiency for the
six estimators listed above. In the case of the symmetric distributions (Normal, Student and Laplace), all the
estimators exhibited a negligible bias in all the scenarios. For the normal distribution, all the robust estimators
suffer from a slight loss of efficiency with values ranging from 100 to 106, which is a desirable feature. For the
t-distribution and the Laplace distribution, the robust estimators were much more efficient than t̂I,WLS . The
estimator t̂I,R(c

∗) was the best but, as expected, incurred some loss of efficiency with respect to the gold standard
estimator t̂I,R(c̃). The estimator t̂I,CB(copt) was outperformed by the other robust estimators.

In the case of asymmetric distributions (Pareto, Frechet, Lognormal, and Weibull), all the robust estimators ex-
hibited some bias, as expected. In virtually all the scenarios, the estimator t̂I,CB(copt) was less biased than its
competitors. The naive estimator t̂I,R(1.345) performed well in some scenarios but performed poorly in others,
especially for larger sample sizes. For instance, for the lognormal distribution, the estimator t̂I,R(1.345) exhibited
a value of RE equal to 134% for n = 200. For highly skewed distributions such as Pareto and Frechet, the pro-
posed robust estimators showed substantial improvement in terms of relative efficiency with respect to t̂I,WLS . In
particular, t̂I,R(cnew) was the best estimator with a value of RE close to that of the gold standard t̂I,R(c̃). For
the Lognormal distribution, all the proposed estimators were more efficient than the non-robust estimator for all
the sample sizes. The robust estimator t̂I,R(cnew) was the best with a value of RE close to that of the gold stan-
dard estimator t̂I,R(c̃). For the Weibull distribution, all the estimators showed a value of RE close to that of t̂I,WLS .

Finally, in the case of the mixture distributions, the robust estimators exhibited substantial improvement over
t̂I,WLS . Both t̂I,R(1.345) and t̂I,R(cnew) performed well, and outperformed t̂I,CB(copt) by a significant margin.
Again, in terms of efficiency, the robust estimator t̂I,R(cnew) showed values of RE comparable to those obtained
with the gold standard t̂I,R(c̃).

6 CONCLUSION

In this paper, we considered the problem of robust imputation in the presence of influential units. We proposed
two new robust estimators that were shown to perform well for a wide class of distributions. Overall, among the
three robust estimators, t̂I,R(c

∗) had the best performance in terms of relative efficiency for symmetric outliers,
whereas the estimator t̂I,R(cnew) was generally the best for asymmetric distributions

We considered the case of linear regression imputation. The extension to imputation procedures based on gener-
alized linear models and non-parametric methods is a topic of future research. Estimating the mean square error
of the proposed robust estimators is a challenging problem and is currently under investigation.

APPENDIX

A Mean Square Error Estimation: derivation with known constant and known standard
deviation

Consider the proposed robust imputed estimator

t̂(B̂R, σ, c) =
∑
i∈S

wiv
⊤
i B̂R, (19)

where B̂R is the solution of the following robust estimating equation

Û(β) =
1

N

∑
i∈Sr

ψc

(
yi − v⊤

i β

σϕ
1/2
i

)
wivi

ϕ
1/2
i

= 0, (20)

8



and ψc(t) is the Huber function such that ψc(t) = cI(t ≥ c) + tI(−c ≤ t ≤ c) + (−c)I(t ≤ −c). Suppose the
probability limit of B̂R is β∗. Using a first-order Taylor expansion, we have

0 = Û(B̂R)

= Û(β∗) +
∂E(Û(β∗))

∂β

(
B̂R − β∗

)
+ op(n

−1/2). (21)

In addition, it can be shown that

∂E(Û(β∗))

∂β
=M1 +M2 +M3, (22)

where

M1 = −E

{
p(vi)c

viv
⊤
i

ϕ
1/2
i

fy|v(v
⊤
i β

∗ + cσϕ
1/2
i )

}
, (23)

M2 = E

{
p(vi)

viv
⊤
i

ϕ
1/2
i

cfy|v(v
⊤
i β

∗ + cσϕ
1/2
i )

}
+ E

{
p(vi)

viv
⊤
i

ϕ
1/2
i

cfy|v(v
⊤
i β

∗ − cσϕ
1/2
i )

}

− E

{
p(vi)

viv
⊤
i

σϕi
I(−c ≤ yi − v⊤

i β
∗

σϕ
1/2
i

≤ c)

}
, (24)

and

M3 = −E

{
p(vi)

viv
⊤
i

ϕ
1/2
i

cfy|v(v
⊤
i β

∗ − cσϕ
1/2
i )

}
. (25)

According to (22)-(25), we have

∂E(Û(β∗))

∂β
= −E

{
p(vi)

viv
⊤
i

σϕi
I(−c ≤ yi − v⊤

i β
∗

σϕ
1/2
i

≤ c)

}
. (26)

According to (21), we have

B̂R − β∗ = −

{
∂E(Û(β∗))

∂β

}−1

Û(β∗) + op(n
−1/2). (27)

Therefore, we have

t̂(B̂R, σ, c) =
∑
i∈S

wiv
⊤
i B̂R

=
∑
i∈S

wiv
⊤
i (β

∗ + B̂R − β∗)

=
∑
i∈S

wiv
⊤
i β

∗ −
∑
i∈S

wiv
⊤
i

{
∂E(Û(β∗))

∂β

}−1

Û(β∗) + op(Nn
−1/2)

=
∑
i∈S

wiηi + op(Nn
−1/2), (28)

where

ηi = v⊤
i β

∗ −

(
1

N

∑
i∈S

wiv
⊤
i

){
∂E(Û(β∗))

∂β

}−1

riψc

(
yi − v⊤

i β
∗

σϕ
1/2
i

)
vi

ϕ
1/2
i

. (29)

Hence, the mean squared error of t̂(B̂R, σ, c) can be written as

MSE(t̂(B̂R, σ, c)) =
{
E(t̂(B̂R, σ, c))− ty

}2
+V

{
t̂(B̂R, σ, c)

}
=

(
N∑
i=1

ηi − ty

)2

+
N∑
i=1

N∑
j=1

(πij − πiπj)
ηi
πi

ηj
πj

+ o(N2/n). (30)
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Therefore, the estimated mean squared error can be written as

M̂SE(t̂(B̂R, σ, c)) = max

{(
t̂(B̂R, σ, c)− t̂I,WLS

)2
− V̂

(
t̂(B̂R, σ, c)− t̂I,WLS

)
, 0

}
+ V̂

{
t̂(B̂R, σ, c)

}
. (31)

In addition, it can be shown that

t̂I,WLS =
∑
i∈Sr

wiyi +
∑
i∈Sm

wiv
⊤
i B̂WLS

=
∑
i∈Sr

wiyi +
∑
i∈Sm

wiv
⊤
i β

∗
WLS +

∑
i∈Sm

wiv
⊤
i

(
B̂WLS − β∗

WLS

)
=

∑
i∈S

wiτi, (32)

where
τi = riyi + (1− ri)v

⊤
i β

∗
WLS +Ariviϕ

−1
i

(
yi − v⊤

i β
∗
WLS

)
, (33)

and A =
∑

i∈Sm
wiv

⊤
i

(∑
i∈Sr

wiviϕ
−1
i v⊤

i

)−1
. Therefore, we have

V̂
(
t̂(B̂R, σ, c)− t̂I,WLS

)
=

∑
i∈S

∑
j∈S

πij − πiπj
πij

η̂i − τ̂i
πi

η̂j − τ̂j
πj

, (34)

where

ηi = v⊤
i B̂R −

(∑
i∈S

wiv
⊤
i

){
N
∂E(U(β∗))

∂β

}−1

riψc

(
yi − v⊤

i B̂R

σϕ
1/2
i

)
vi

ϕ
1/2
i

, (35)

∂E(Û(β∗))

∂β
= − 1

N

∑
i∈Sr

wi
viv

⊤
i

σ̂ϕi
I(−c ≤ yi − v⊤

i B̂R

σ̂ϕ
1/2
i

≤ c), (36)

and
τ̂i = riyi + (1− ri)v

⊤
i B̂WLS +Ariviϕ

−1
i

(
yi − v⊤

i B̂WLS

)
. (37)

In addition, we have

V̂
{
t̂(B̂R, σ, c)

}
=
∑
i∈S

∑
j∈S

πij − πiπj
πij

η̂i
πi

η̂j
πj
, (38)

so, M̂SE(t̂(B̂R, σ, c)) can be obtained according to (31)-(38).
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