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ABSTRACT

Statistical agencies are interested in publishing useful statistical data but doing so may lead to the disclosure
of individuals’ private data. This is a problem, as it leads to a trade-off between the utility of the published data
and the risk of disclosure of confidential data. Disclosure control can be seen as the use of methods to deal with
this problem by assessing and controlling the risk of disclosing confidential data while also providing researchers
with useful statistical data. This paper describes a disclosure control model based largely on Bayesian decision
theory. This model allows for the description of the concepts of disclosure control in terms of familiar statistical
concepts such as expectation and variance. A method of disclosure control, called Random Tabular Adjustment
(RTA), is described. This method controls the risk of disclosure by randomly adjusting the data instead of
suppressing cells. It fits naturally into the disclosure control model described.
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RÉSUMÉ

Les agences statistiques sont intéressées à publier des données statistiques utiles, mais cela peut parfois con-
duire à la divulgation de données privées sur des individus. Ceci constitue un problème. Il est alors nécessaire
de chercher un compromis entre l’utilité des données publiées et le risque de la divulgation de données con-
fidentielles. On peut envisager le contrôle de la divulgation comme l’utilisation de méthodes pour traiter ce
problème en évaluant et en contrôlant le risque de la divulgation de données confidentielles tout en fournissant
aux chercheurs des données statistiques utiles. Cet article décrit un modèle de contrôle de la divulgation fondé
en grande partie sur la théorie de la décision bayésienne. Ce modèle permet de décrire les concepts de contrôle
de la divulgation en fonction de concepts statistiques familiers tels que l’espérance et la variance. Une méthode
de contrôle de la divulgation, appelée Rajustement Tabulaire Aléatoire (RTA), est présentée. Cette méthode
contrôle le risque de divulgation en ajustant aléatoirement les données au lieu de supprimer des cellules. Elle
s’inscrit naturellement dans le modèle de contrôle de la divulgation décrit dans l’article.

MOTS CLÉS : Divulgation; confidentialité; rajustement aléatoire; données tabulaires; Bayésien.

1 INTRODUCTION

Statistical agencies usually collect the private data of individuals under the requirement that this data will not be
disclosed while at the same time publishing as much statistically useful data as possible. When the published data
can be used to disclose the private data of an individual, these goals come into conflict. To resolve this conflict
the data must be altered in some manner before it is published so that the risk of disclosure is controlled.

In this paper a model is proposed that attempts to formalize this situation. To model the effectiveness of the
disclosure control, the users of the published data and their targets are considered. Some users are interested in
inferring general features of the population but some users are interested in inferring confidential attributes of the
individuals who provided the data. These users are called analysts and attackers respectively. For the statistical
agency, the published data is useful, if analysts can make sufficiently good inferences about the population, and
safe, if attackers cannot make good inferences about the providers of the data. To assess how useful and safe the
published data is, models of the knowledge that the users have of their targets before and after publication and
measures of the uncertainty that users have in making inferences are selected. This fits naturally into a Bayesian
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decision theoretic framework and this allows the uncertainties and other quantities in the model to be expressed
in terms of familiar statistical quantities such as expectations and variances.

The proposed model for disclosure control and the associated disclosure control problem are described and
then used to formulate and solve a simplified disclosure control problem. The general model and problem are
introduced in two parts. The first part introduces a high level model, called the basic disclosure control model,
that is sufficiently abstract that it describes most disclosure control models. The associated problem, called the
basic disclosure control problem, is then described. The second part introduces a more detailed model, called the
general disclosure control model, that fills in the details of the basic model using concepts from Bayesian decision
theory. The associated problem, called the general disclosure control problem, is also described. A simplified
disclosure control model, called the simple Random Tabular Adjustment (RTA) model, is then described and its
associated problem solved. This problem is solved analytically and so the solution provides a simple function of
the input parameters which can be evaluated without the use of any complex numerical algorithm.

Many different models and methods of disclosure control have been proposed. A good overview is found
in Willenborg and De Waal (2001). Bayesian decision theory has been used in disclosure control before. The
disclosure control model presented here builds on similar approaches that can be found in Duncan and Lambert
(1986) and Fienberg and Trottini (2002). The proposed model in this paper both simplifies and extends this
previous work.

2 DISCLOSURE CONTROL

Disclosure control can be seen as the use of methods of assessing and controlling the risk of disclosing confidential
data while also providing researchers with useful information when publishing data. To do this an appropriate
model and an appropriate formulation of the problem are needed.

2.1 Basic Disclosure Control Model

The basic disclosure control model formalizes the above description of disclosure control. A disclosure control
method is selected to change the original data into altered data. A measure of the usefulness of the altered data,
called the utility, is selected and a measure of the risk of disclosure of the altered data, simply called the risk,
is also selected. The disclosure control method depends on a disclosure control parameter and this parameter is
chosen so that the method provides sufficient control of the risk of disclosure while maximizing the utility of the
altered data that results from using the method.

2.1.1 Disclosure Control Method

2.1.1.1 Definition (Disclosure Control Method). A disclosure control method is a function that takes the original
data and yields the altered data. The method depends on a disclosure control parameter φ.

There is a large variety of disclosure control methods. Disclosure control methods may be deterministic or
probabilistic and may involve restriction or perturbation of the data. Suppression is a common method for tabular
magnitude data and rounding is common for frequency data. Suppression restricts while rounding perturbs the
published data. Both of these are deterministic. Data swapping and the addition of random noise are common
probabilistic methods.

The disclosure control parameter controls how the original data is altered and depends on the method used.
For example if rounding is used, a rounding base needs to be selected, and so the disclosure control parameter is
the rounding base in this case. If random noise is added, a distribution for the noise needs to be selected and so
the disclosure control parameter is the distribution of the noise.

2.1.2 Utility and Risk

2.1.2.1 Definition (Utility and Risk). The utility U and risk R of the altered data are functions of the altered
data and depend on the disclosure control parameter φ. These functions measure the usefulness and disclosure risk
of the altered data respectively.
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As with disclosure control methods there is a large variety of utility and risk measures. If suppression is used
as the method on tabular magnitude data, the value of the published cells in a table is often used as a measure of
utility and risk is measured using the lengths of the feasible intervals of the suppressed cells. If rounding is used,
the distance of the rounded table from the original is often used as a measure of utility and the rounding base
may be used to measure the risk.

2.2 Basic Disclosure Control Problem

Statistical agencies typically want to find the method that maximizes utility while constraining risk. Using the
above concepts we can formulate the basic disclosure control problem as an optimization problem.

2.2.0.2 Problem (Basic Disclosure Control). Find the disclosure control parameter φ that maximizes

U(φ)

under the constraint
R(φ) ≤ r

where r is the selected risk threshold.

2.3 General Disclosure Control Model

The utility and risk of the altered data in the basic disclosure control model need to be described in more detail
before any practical use can be made of this model. To do this we need models of who is using the data, what
they are estimating and how well they are estimating it. The general disclosure control model is introduced and
this model includes the concepts of target and user, prior, posterior and base distribution, loss and uncertainty.
These concepts are formalized using concepts from Bayesian decision theory.

2.3.1 Targets and Users

2.3.1.1 Definition (Target). A target is a function of the original data. Targets may be confidential or analytical.

The values of analytical targets are to be made available and a publication that reveals these values contributes
to utility. Conversely the values of confidential targets are to be made unavailable and a publication that reveals
these values contributes to risk. A typical analytical target is a population parameter such as a mean or total and
a typical confidential target is the contribution to the original data of a single individual.

2.3.1.2 Definition (User). A user is an individual who estimates a target using the published data. A user who
estimates an analytical target is an analyst. A user who estimates a confidential target is an attacker.

Different users may know different things about their targets and the data. This may contribute to how well
they can estimate their targets and so should be accounted for in the model. Users may even be data providers
and so know their own contribution to the original data.

2.3.2 Prior, Posterior and Base Distributions

For each target and user we have a model representing the user’s knowledge of the target and the altered data.
From this the user’s knowledge of the target after the data is published can be determined. The user’s knowledge
of the target and altered data is represented by a probability distribution in this model. In addition for each target
a probability distribution is selected to be used as a benchmark against which the user’s knowledge of the target
is compared.

2.3.2.1 Definition (Prior Distribution). The user’s knowledge of the target and the altered data before the altered
data is published is represented by the user’s probability distribution of the target and the altered data. This
distribution is the prior distribution.

2.3.2.2 Definition (Posterior Distribution). The user’s knowledge of the target after the altered data is published
is represented by the user’s probability distribution of the target given the altered data. This distribution is the
posterior distribution.

3



2.3.2.3 Definition (Base Distribution). The user’s knowledge of the target after the altered data is published is
compared to a selected distribution. This distribution is the base distribution.

2.3.3 Loss and Uncertainty

A measure of how well the users can estimate their targets is needed. This is formalized by describing the user’s
estimation problem as a problem from decision theory. The concepts of loss and uncertainty provide a way to do
this. Using the expected loss to measure uncertainty in estimation is done in other contexts (see DeGroot (1962)).

The following descriptions make use of a target variable A, an observation variable B and a loss function f .
The descriptions also make use of the estimator Θ and the uncertainty Ψ. Also note that in what follows E and
V are the expectation and variance operators.

2.3.3.1 Definition (Loss Function). The loss function f is the function that determines the measure of error
f(a, θ) of a user in using an estimate θ for a target value a.

Before making an observation it is assumed that the user selects the estimator that minimizes the user’s prior
expected loss. The user solves the following problem.

2.3.3.2 Problem (User’s Prior Target Estimation). Find a value θ that minimizes E(f(A, θ)). A solution to this
problem is the user’s prior estimator and is denoted by Θ(A).

After making an observation it is assumed that the user selects the estimator which minimizes the user’s
posterior expected loss given an observation. The user then solves the following problem.

2.3.3.3 Problem (User’s Posterior Target Estimation). Find a value θ that minimizes E(f(A, θ)|B). A solution
to this problem is the user’s posterior estimator and is denoted by Θ(A|B).

A large value for the minimal expected loss indicates that the user’s estimate may be poor and so the user is
uncertain about their knowledge of the target. Note that if the user selects a different estimator, then the user’s
expected loss can only be larger. Assuming that the user selects the estimator that minimizes the expected loss is
the same as assuming the best case from the user’s perspective.

2.3.3.4 Definition (Prior Uncertainty). A user’s prior uncertainty in estimating a target is the user’s expected
loss. The prior uncertainty Ψ(A) is given by

Ψ(A) = E(f(A,Θ(A))).

A user’s prior certainty is the reciprocal of the user’s uncertainty.

2.3.3.5 Definition (Posterior Uncertainty). A user’s posterior uncertainty in estimating a target is the user’s
posterior expected loss. The posterior uncertainty Ψ(A|B) is given by

Ψ(A|B) = E(f(A,Θ(A|B))|B).

A user’s posterior certainty is the reciprocal of the user’s uncertainty.

A useful loss function in this context is the quadratic loss function. The quadratic loss function is a good
choice for continuous data although others are possible. It leads to uncertainties that may be expressed in terms
of familiar statistical quantities as the following lemma states.

2.3.3.6 Definition (Quadratic Loss). The quadratic loss function is given by f(a, θ) = (a− θ)2.

2.3.3.7 Lemma (Quadratic Loss). Given a quadratic loss function the prior estimator Θ(A) is given by Θ(A) =
E(A) and the prior uncertainty Ψ(A) is given by Ψ(A) = V (A). The posterior estimator Θ(A|B) is given by
Θ(A|B) = E(A|B) and the posterior uncertainty is given by Ψ(A|B) = V (A|B).

4



2.4 General Disclosure Control Problem

The concept of uncertainty leads to natural definitions of risk and utility. To this end let τ be a confidential target,
υ be an analytical target, α be an attacker and β be an analyst. Also let Xτα be a user target variable for target
τ and user α, Yτ be a base target variable for target τ and Zα be a user observation variable for user α. Finally
let z be an observed value.

The distribution of the user target variable Xτα represents the knowledge of the user α of the target τ before
publication and the distribution of the user observation variable Zα represents the knowledge of the user α of the
altered data before publication. The joint distribution of the user target variable Xτα and the observation variable
Zα is the prior distribution. The distribution of the base target variable Yτ is the base distribution and is used to
make comparisons with uncertainties in risk and utility calculations.

The utility and risk are defined in terms of uncertainties of the above variables. Using these definitions the
basic disclosure control problem becomes the general disclosure control problem.

2.4.0.8 Definition (Utility). The utility of the altered data is the smallest relative certainty of a user in estimating
an analytical target. The utility U is a function of the disclosure control parameter φ given by

U(φ) = inf
υβz

Ψ(Yυ)

Ψ(Xυβ|Zβ(φ) = z)
.

The cost of the altered data is the reciprocal of the utility of the altered data.

2.4.0.9 Definition (Risk). The risk of the altered data is the largest relative certainty of a user in estimating a
confidential target. The risk R is a function of the disclosure control parameter φ given by

R(φ) = sup
ταz

Ψ(Yτ )

Ψ(Xτα|Zα(φ) = z)
.

The safety of the altered data is the reciprocal of the risk of the altered data.

Here the convention that if the prior uncertainty of the base variable and the posterior uncertainty of the user
variable are zero then the ratio is not considered when determining the infimum or supremum.

3 SIMPLE RTA

In simple Random Tabular Adjustment (RTA) the use of the general disclosure control model is demonstrated
using a simple situation. Here the original data consists of a set of individuals and their contributions to a single
cell. The contributions are real-valued, unbounded and continuous data. The total of this cell is to be published.
The contribution of each individual to the cell total is confidential. The users of the published data are individuals
that may include the contributors. To control the risk of disclosure, a random value is added to the cell total.

3.1 Simple RTA Model

The parts of the general disclosure control model for simple RTA are specified and the resulting expressions are
derived so that the simple RTA problem can be solved.

3.1.1 Disclosure Control Method

Disclosure is controlled by adding a random variable ∆ to the cell total where ∆ ∼ N(0, σ2). The parameter σ2

controls the variance of the random value added to the total and is the disclosure control parameter in this model.

3.1.2 Targets and Users

There is one analytical target, the cell total. The user target variable for the cell total is denoted by Xg∗ for user
individual g. There are many confidential targets, namely each target individual’s contribution, and many users
estimating these targets. The user target variable for the individual’s contribution is denoted by Xgh for user
individual g and target individual h.
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3.1.3 Prior, Posterior and Base Distributions

It is assumed that the users have some prior knowledge of each individual’s contribution to the cell and that the
set of contributors to the cell is known. The distribution of the user data variable Dgi represents the knowledge of
the user individual g of the contribution to the cell of the individual i. It is assumed that Dgi ∼ N(mgi, v

2
gi) and

that these variables are independent. A base data variable Ei for individual i is selected such that Ei ∼ N(ni, w
2
i )

and again it is assumed that these variables are independent.
The target variables and observation variables can be expressed in terms of these data variables. The confi-

dential user target variable for user individual g and target individual h is given by Xgh = Dgh, the analytical user
target variable for user individual g is the unaltered cell total Xg∗ =

∑
iDgi and the observation variable for user

individual g is the altered cell total Zg =
∑

iDgi + ∆. Similarly the confidential base target variable is given by
Yh = Eh and the analytical base target variable Y∗ =

∑
iEi.

The posterior distribution for the confidential target variables can be determined from the prior distributions.
To simplify the following calculations let mg∗ =

∑
imgi and v2g∗ =

∑
i v

2
gi. The joint distribution of Xgh and Zg is

then given by [
Xgh

Zg

]
∼ N

([
mgh

mg∗

]
,

[
v2gh v2gh
v2gh v2g∗ + σ2

])
.

From this it follows that the posterior distribution is given by

Xgh|Z ∼ N

(
mgh +

v2gh
v2g∗ + σ2

(Zg −mg∗), v
2
gh −

v4gh
v2g∗ + σ2

)
.

The posterior distribution for the analytical target variables can also be determined from the prior distributions.
The joint distribution of Xg∗ and Zg is then given by[

Xg∗
Zg

]
∼ N

([
mg∗
mg∗

]
,

[
v2g∗ v2g∗
v2g∗ v2g∗ + σ2

])
.

From this it follows that the posterior distribution is given by

Xg∗|Zg ∼ N

(
mg∗ +

v2g∗
v2g∗ + σ2

(Zg −mg∗), v
2
g∗ −

v4g∗
v2g∗ + σ2

)
.

The distributions of the base variables can also be determined. Let n∗ and w2
∗ be given by n∗ =

∑
i ni and

w2
∗ =

∑
iw

2
i so that the distributions of the base variables are given by

Yh ∼ N(nh, w
2
h), Y∗ ∼ N(n∗, w

2
∗).

3.1.4 Loss and Uncertainty

Recall that the uncertainty is the minimal expected loss associated with a user estimation problem and so measures
how poor the user’s best estimate is in estimating the target.

A natural choice of loss function in this context is the quadratic loss function. Under this loss function the
uncertainties are easy to determine as they are the variances of the above distributions. The posterior uncertainties
for the confidential user target variables are given by

Ψ(Xgh|Zg = z) = V (Xgh|Zg = z) = v2gh −
v4gh

v2g∗ + σ2
.

The posterior uncertainties of the analytical user target variables are given by

Ψ(Xg∗|Zg = z) = V (Xg∗|Zg = z) = v2g∗ −
v4g∗

v2g∗ + σ2
.

For the base target variables the corresponding uncertainties are given by

Ψ(Yh) = V (Yh) = w2
h, Ψ(Y∗) = V (Y∗) = w2

∗.
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3.2 Simple RTA Problem

Using the above expressions for the various uncertainties in the model we find simple expressions for the utility
and risk functions given by

U(σ2) = inf
gz

Ψ(Y∗)

Ψ(Xg∗|Zg(σ2) = z)
= inf

g

w2
∗

v2g∗ −
v4g∗

v2g∗+σ
2

,

R(σ2) = sup
ghz

Ψ(Yh)

Ψ(Xgh|Zg(σ2) = z)
= sup

gh

w2
h

v2gh −
v4gh

v2g∗+σ
2

.

3.2.0.1 Problem (Simple RTA). Find a disclosure control parameter σ2 that maximizes

inf
g

w2
∗

v2g∗ −
v4g∗

v2g∗+σ
2

under the constraint

sup
gh

w2
h

v2gh −
v4gh

v2g∗+σ
2

≤ 1.

This problem can be solved analytically. The objective function is a decreasing function of σ2 so if there is a
solution, the value that maximizes the objective function is the smallest that satisfies the constraint. If v2gh > w2

h

for all target individuals h and user individuals g, then the solution is given by

σ2 = sup
gh

(
v4gh

v2gh − w2
h

− v2g∗

)

provided the right hand side is non-negative and σ2 = 0 otherwise. If v2gh ≤ w2
h for some target individual h and

user individual g, then there is no solution.
Once the variance σ2 is determined, a realized value of ∆ is randomly selected and added to the total x∗ to

get z. The value z together with the variance σ2 are published.

3.2.0.2 Example (Simple RTA Example). Suppose that the following data set is given.

i di
1 35
2 50
3 −5

The total of the values of this data set is to be published but the contribution of individual 1 is confidential. It
is decided that this confidential contribution should be protected against a user g with prior means and variances
given by

i di mi v2i
1 35 50 500
2 50 40 200
3 −5 5 50

A base variance w2
1 of 100 is also selected.

From the solution of the simple RTA problem we see that

v4g1
v2g1 − w2

1

− v2g∗ =
5002

500− 100
− 750 = −125

and so σ2 = 0. No random adjustment is needed to control the risk of disclosure from releasing the total. The total
80 is released.
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In addition we can calculate the parameters of the posterior distribution of the user’s knowledge of the contri-
bution of individual 1 and determine the user’s best estimate and uncertainty.

E(Xg1|Zg = z) = mgh +
v2gh

v2g∗ + σ2
(z −mg∗)

= 50 +
500

750 + 0
(80− 95) = 40

V (Xg1|Zg = z) = v2g1 −
v4g1

v2g∗ + σ2
= 500− 5002

750 + 0
= 167

Thus the posterior distribution is given by X1|Z = z ∼ N(40, 167) so that the user’s best estimate of the contribution
of individual 1 is Θ(Xg1|Zg = z) = 40 with uncertainty Ψ(Xg1|Zg = z) = 167.

3.2.0.3 Example (Simple RTA Example). Suppose that the data set of the previous example is given. Again the
total of the values of this data set is to be published and the contribution of individual 1 is confidential. Now it
is decided that this confidential contribution should be protected against a user g with prior means and variances
given by

i di mi v2i
1 35 50 500
2 50 50 0
3 −5 5 50

Note that these prior parameters describe the situation where the user knows the contribution of individual 2
exactly. Again a base variance w2

1 of 100 is also selected.
From the solution of the simple RTA problem we see that

v4g1
v2g1 − w2

1

− v2g∗ =
5002

500− 100
− 550 = 75

and so σ2 = 75. A random adjustment ∆ with distribution N(0, 75) is needed to control the risk of disclosure
from publishing the total. A realized adjustment of 3 is selected and added to the total. The altered total of 83 is
published along with the variance of the adjustment.

In addition we can calculate the parameters of the posterior distribution of the user’s knowledge of the contri-
bution of individual 1 and determine the user’s best estimate and uncertainty.

E(Xg1|Zg = z) = mgh +
v2gh

v2g∗ + σ2
(z −mg∗)

= 50 +
500

550 + 0
(83− 105) = 30

V (Xg1|Zg = z) = v2g1 −
v4g1

v2g∗ + σ2
= 500− 5002

550 + 75
= 100

Thus the posterior distribution is given by X1|Z = z ∼ N(30, 100) so that the user’s best estimate of the contribution
of individual 1 is Θ(Xg1|Zg = z) = 30 with uncertainty Ψ(Xg1|Zg = z) = 100.

3.3 Simple RTA Parameters

One way to interpret the prior and base distribution parameters in simple RTA is in terms of user knowledge
and protection. The prior distribution parameters determine the most knowledgeable user protected against and
the base distribution parameters determine the amount of protection given to the target. Smaller prior variances
determine more knowledgeable users and larger base variances determine more protected targets. There are
many ways to select these parameters but they all involve making assumptions about the knowledge of the users
estimating the targets and how much protection a target requires.
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Here is one way to select the prior and base distribution parameters that leads to some simplifications under
some reasonable assumptions. It is assumed that the contribution of each individual is a target and that each
contributing individual is an attacker. Furthermore it is assumed that each individual knows their own contribution
and that every other individual knows this contribution equally well. This situation corresponds to setting the
prior variances using

v2gh =

{
r2h if g 6= h
0 if g = h

Note that the variance is zero when g = h indicating that there is no variability associated with an individual’s
own contribution and when g 6= h the variance depends only on the target individual h.

Using the above solution to simple RTA, if r2h > w2
h for all target individuals h then

σ2 = sup
gh

(
r4h

r2h − w2
h

+ r2g − r2∗
)

provided the right hand side is non-negative and σ2 = 0 otherwise. If r2h ≤ w2
h for some target individual h, then

there is no solution. Here r2∗ =
∑

i r
2
i . Note that determining the supremum in this case does not require a search

through all possible pairs of individuals g and h. Only the pairs where user individual g maximizes r2g or target
individual h maximizes r4h/(r

2
h − w2

h) need to be considered. This reduces the amount of work needed to calculate
the disclosure control parameter σ2.

If a size measure si is available for each individual i, coefficients of variation can be selected for the prior and
base variances. This provides a simple and understandable way of determining all the prior and base parameters.
When a prior coefficient of variation ε and a base coefficient of variation η are selected, the prior and base variances
are given by r2i = ε2s2i and w2

i = η2s2i .
Using the above solution solution, if η < ε then

σ2 = sup
gh

(
λ2s2h + ε2s2g − ε2s2∗

)
provided the right hand side is non-negative and σ2 = 0 otherwise. If η ≥ ε then there is no solution. Here
λ2 = ε4/(ε2 − η2) and s2∗ =

∑
i s

2
i . Since λ > ε, this supremum is attained when the individual h has the largest

size and the individual g has the second largest. It follows that

σ2 = λ2s2(1) + ε2s2(2) − ε
2s2∗

where s(1) is the size of the largest individual and s(2) is the size of the second largest individual. This expression
is similar to the expression used in traditional sensitivity rules such as the pq-rule. A discussion of sensitivity rules
can be found in Willenborg and De Waal (2001).

3.3.0.4 Example (Simple RTA Example). Suppose the following data set is given. This data set includes a size
measure.

i di si
1 35 40
2 50 30
3 −5 15

Here it is decided that the total of the values of this data set should be published but that each individual should
be protected against every other individual. Since we have size measures available, coefficients of variation can be
selected to determine the prior and base variances. The prior coefficient of variation is selected to be 1/2 and the
base coefficient of variation is selected to be 1/4.

From the above solution

λ2s2(1) + ε2s2(2) − ε
2s2∗ =

1

3
402 +

1

4
302 − 1

4
(402 + 302 + 152) = 77

and so σ2 = 77. A random adjustment ∆ with distribution N(0, 77) is needed to control the risk of disclosure
from publishing the total. A realized adjustment of 10 is selected and added to the total. The altered total of 90 is
published along with the variance of the adjustment.
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4 CONCLUSION

A general disclosure control model has been proposed and used to solve the simple RTA problem. This model
uses concepts from Bayesian decision theory to formulate disclosure control problems. It does this by defining the
utility and risk of the published data in terms of users who make inferences about targets using the published data.
Solving the general disclosure control problem involves finding the value of the disclosure control parameter that
maximizes the utility while constraining the risk. The simple RTA problem is formulated and solved analytically.
This problem involves a single cell total that is to be published while protecting the contributions of the individuals
who contributed to the cell. When the prior and base parameters are selected in certain ways, the disclosure control
parameter that solves the problem is simple to calculate and is similar to traditional sensitivity rules used in the
disclosure control of tabular magnitude data.
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