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ABSTRACT

Privacy Enhancing Technologies (PETs) are an emerging class of technologies with a promise to protect the pri-
vacy and con�dentiality of data throughout its life cycle, while maintaining its utility. PETs provide Statistical
O�ces opportunities to facilitate collaborative analytic on less-accessible data to derive valuable insights. Statis-
tics Canada has started experimenting with PETs a few years ago. To this end, multiple research projects have
successfully been completed, such as the application of homomorphic encryption on training a machine learning
(ML) classi�er, privacy preserving record linkage with secure Multi-Party Computation and applying Feder-
ated Learning in the context of privacy preserving crowdsourcing. In this article, we will discuss some of these
activities and share insights on potential opportunities and challenges of adopting PETs in the O�cial Statistics.

KEY WORDS: Privacy enhancing technologies, homomorphic encryption, secure multi-party computation, fed-
erated learning, o�cial statistics

RÉSUMÉ

Les technologies d'amélioration de la con�dentialité (TAC) représentent une nouvelle catégorie de technologies
prometteuses pour la protection de la vie privée et la con�dentialité des données tout au long du cycle de vie de
ces dernières, tout en conservant leur utilité. Les technologies d'amélioration de la con�dentialité permettent aux
bureaux de statistique de faciliter l'analyse collaborative de données moins accessibles a�n d'en tirer de précieux
renseignements. Statistique Canada a commencé à expérimenter les TAC il y a quelques années. À cette �n,
de nombreux projets de recherche ont été menés à bien, tels que l'application du chi�rement homomorphe à
la formation d'un classi�cateur d'apprentissage automatique (AA), le couplage d'enregistrements préservant la
con�dentialité avec le calcul multipartite sécurisé et l'application de l'apprentissage fédéré dans le contexte de
la production participative préservant la con�dentialité. Dans cet article, nous présenterons certaines de ces
activités et nous échangerons nos points de vue sur les possibilités et les dé�s potentiels de l'adoption des TAC
dans les statistiques o�cielles.

MOTS CLÉS : Technologies d'amélioration de la con�dentialité, chi�rement homomorphe, calcul multipartite
sécurisé, apprentissage fédéré, statistiques o�cielles.

1 INTRODUCTION

In today's world, data �ows in every direction in such a way that signals and noise are often indistinguishable.
The data volumes are going to grow in the coming years and decades with emerging technological advancements.
It is not just the volume, but also the velocity, variety and veracity of the generated data are orders of magnitude
higher than any conceivable data collection in the pre-digital era. Examples of such data include sensors, mobile
applications, satellite imagery, Internet-of-Things, 5G networks, etc. The new waves of data can create many
opportunities for society and industries to leverage in the coming years; however, cybersecurity and data privacy
are still among the most pressing and imperative issues.
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To understand where the main problem lies, we have to �rst review the life-cycle of the data. More precisely,
data lives in three states: at rest, in transit and in use. It is well known that data is vulnerable throughout its life-
cycle and as a result, cybersecurity protocols for data protection at rest, for instance Symmetric Key Encryption,
and in-transit, such as Transport Layer Security, have been standardized and implemented at large scale, e.g., in
digital signatures. In recent years, Privacy Enhancing Technologies (PETs) have emerged to provide data protection
while enabling data processing (Van Blarkom et al., 2003). In fact, PETs is a generic term that covers a broad range
of approaches that promise to provide protection for data throughout its life-cycle, i.e. while collecting the data,
processing it and disseminating the results. These approaches include homomorphic encryption, secure multi-party
computation, di�erential privacy, distributed ML (e.g., Federated Learning), trusted execution environments and
zero-knowledge proofs. We provide a high-level review for a few of these methods in the subsequent sections.

Statistics Canada has the mandate to provide statistical information and data about Canada's economy, society
and environment to help Canadians better understand their country and improve public decision making for
the bene�t of all Canadians. The organization already has rigorous measures in place to preserve privacy and
con�dentiality in the modern digital era. As the agency continues to implement new technologies and innovations,
its commitment to protecting privacy and security remains the highest priority. The data science team at Statistics
Canada has been exploring the use of these existing and emerging PETs to continuously address the privacy
preservation needs for highly sensitive information in various statistical programs. In addition to alternative storage
options, PETs will allow the agency to adopt and implement remote and delegated computing on encrypted data,
bene�t from potential multi-party computation opportunities and derive insights from distributed and inaccessible
data (Government of Canada, 2021).

It is important to note that PETs do not solve the important trade-o� between security and privacy in one
hand and data use in the other by themselves, but only o�er risk mitigation that may be the di�erence between a
statistical project being a go or no-go. Another important aspect of the PETs is that some of them are designed
and proposed to address the input privacy, while others are focused more on the issue of output privacy. Input
privacy is concerned with how to ensure privacy of the input data of one or more participating parties (or data
holders), who enter a joint function, e.g., a statistical algorithm. Output privacy on the other hand typically
relies on either aggregation or sensitivity analysis, e.g., traditional data disclosure controls, or perturbation, e.g.,
di�erential privacy. The aim here is to prevent and reduce risks of re-identi�cation of information about data
subjects, e.g., personal identi�able information, by reverse engineering the outputs of the statistical algorithms
and published data. It is worth noting that Statistics Canada operates under the Statistics Act, as its legislative
framework. As a result, for decades, the agency has e�ectively developed statistical disclosure control measures to
satisfy the requirements of the Statistics Act, ensuring that no sensitive personal or micro-data is disclosed while
disseminating statistical products.

In this article, we will review a few of the research projects at Statistics Canada that involve PETs, with a focus
on those that address the input privacy. In section 2, we will cover one application of homomorphic encryption on
a delegated computing scenario, where data providers, data consumers and the computing party are all distinct
entities. Next, we will provide an overview of a two-party privacy preserving record linkage protocol in section
3, where a combination of data obfuscation and secure multi-party computation is used. Then, we will review
an application of Federated Learning (FL) approach in the context of a privacy preserving crowdsourcing activity
in section 4. Finally, in section 5 we will provide conclusions and outlooks of the direction that the data science
group in Statistics Canada is taking in this area. It is worth noting that none of these projects are in production
at Statistics Canada at the time of writing this article.

2 Supervised text classi�cation with leveled homomorphic encryption

At a high-level, Homomorphic Encryption (HE) is an asymmetric crypto-system that allows arithmetic operations
to be performed on encrypted data without the need to decrypt it �rst. The core idea behind HE is to make the
encryption map a ring homomorphism from the plaintext space to the ciphertext space, which would then preserve
addition and multiplication operations. This is unlike the existing standard encryption protocols that would �rst
require decrypting the ciphertexts with the private key. In the last few years, focused research on HE has resulted
in reducing its computational and communication costs by orders of magnitudes, while providing cryptographic
security. On the application front, HE has been applied to delegated computing scenarios involving sensitive data
in areas such as health, �nance, and justice (Raisaro et al., 2018).
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Figure 1: High-level graphical representation of a HE-based cloud computation scenario. We have a private data set
D that we would like to apply a function f to, but for some reasons this is prohibited. Perhaps f is computationally
expensive, or proprietary. With HE, we can encrypt our data to Enc(D) and send it to the cloud, who can apply
f homomorphically, i.e. f(Enc(D)), and then return it to us to decrypt and use. We get our desired results at the
end of the protocol, i.e. f(D), without the cloud having access to the data D during or after it.

In the �rst research project on PETs, we consider an HE cloud computing paradigm where data providers and
consumers are separate entities (see Figure 1). To be precise, in this hypothetical paradigm the data providers
would be retailers across Canada, who own the scanner data, encoding point-of-sale transactions and consisting
of product description, some identi�ers and prices. Scanner data, which is statistically sensitive information, is
currently used in business statistics programs at Statistics Canada to produce various price statistics. HE would
allow Statistics Canada to outsource part of the scanner data work�ow to the cloud, while ensuring that the privacy
of the input data is preserved. In this scenario, Statistics Canada would be the consumer party that would delegate
part of its internal work�ow to the cloud, as the computing party, while preserving the privacy requirements of the
input data (see Figure 2).

Figure 2: The HE-based cloud computation scenario, with the retailers (R) as data providers and Statistics Canada
(SC) as the consumer. The cloud, as the computing party will perform the instructed operations on encrypted
data, e.g., training a ML model.

In this research project we have accomplished two main tasks. The �rst involves the computation of simple
statistics, such as the total, mean and variance of thousands of encrypted lists of synthetic price values by using
a leveled HE scheme (Fan & Vercauteren, 2012). Qualitative results show roughly ∼ 10x run time expansion in
the ciphertext space comparing to the cleartext. The second task involves the training of a single-layer neural
network classi�er on encrypted text data to predict the North American Product Classi�cation System (NAPCS).
The classi�cation of the product description is in fact the �rst step in the scanner data's work�ow. NAPCS is
an international standardized system of product codes that is used to classify di�erent types of products for the
purpose of producing aggregate product statistics. In this project, we consider a similar data set containing about
50, 000 text entries from the USDA's FoodData Central (USDA, 2020) that has been manually labeled according
to 5 di�erent NAPCS codes.

Our main goal was to investigate the feasibility of using HE in computationally intensive ML tasks, such as
training a neural network while preserving the con�dentiality of the input data set. With techniques such as
packing and multi-threading we managed to train an ensemble neural network that learns from a large encrypted
data set for the supervised text classi�cation. Comparing to the cleartext experiments, our results of experiments
in the ciphertext domain prove that the performance degradation introduced by the inherent noise as well as the
approximate computation of HE is manageable. HE o�ers an unparalleled level of cryptographic security, but, of
course, adds the cost of higher computational and storage requirements. Also, the leveled nature of these schemes
limits the number of consecutive operations we can perform on a ciphertext. This is because noise accumulates
in a ciphertext as you compute on it until the noise �nally overcomes the signal. In practice, we have about

3



30 consecutive multiplications on a ciphertext before we need to decrypt it. Further details about this project,
including the types of models and their performance can be found in Zanussi et al. (2021).

3 Privacy preserving record linkage

Our second PET project involves record linkage, which is the process of �nding records of the same units, e.g.,
the intersection, in two privately owned tabular data sets held by separate hypothetical entities, while performing
analysis on it. Normally, this process requires at least one party who must share their private data with the other
for the purpose of record linkage. However, privacy concerns and regulations often prohibit data holders to enrich
their data with other sources through record linkage. In this project, we use a combination of data obfuscation
methods and Secure Multi-Party Computation (SMPC) to investigate the feasibility of a privacy preserving record
linkage (PPRL), namely �nding the set intersection that is enriched with auxiliary information (i.e. payload) from
the other data set and calculating some basic aggregates on it, while preserving the privacy of the input data.
PPRL can have applications that are relevant to a National Statistical O�ce (NSO); for instance, it can facilitate
the dissemination of sensitive information by reducing the administrative overhead in data sharing processes and
fostering collaboration among data holders in either the same or under di�erent jurisdictions. For a general overview
of record linkage and its technical aspects, interested readers can consult (Haron et al., 2016).

In this work, we consider a scenario in which a secondary entity would like to enrich their data by performing a
record linkage with survey data that is already collected by an NSO and further compute some basic aggregates on
the intersection, all in a privacy preserving manner, in the sense that the external party would not have access to
the survey micro-data. Here, we implement a deterministic record linkage (exact matching) on a common identi�er
between the two data sets and compute the aggregates on the complemented intersection by some of the numerical
and categorical variables in the sample survey, such as age, sex at birth, marital status, etc. The result is a table
of weighted sums or averages, one for each value of every attribute in the complemented linked table.

We apply the PPRL protocol outlined in Chandran et al. (2022) and Pinkas et al. (2019) to the problem
outlined above. While these works consider very simple computations on the intersection (e.g., computing the
cardinality, and only returning it if it is greater than an agreed upon threshold), we extend their methods to
accept payloads as well as perform generic computations on these payloads. To perform the PPRL, we have devel-
oped a two-step process. First, the data sets are input into an Oblivious Programmable Pseudo-Random Function

(OPPRF), which allows for data to be securely obfuscated in a controlled way that facilitates linkage. Next, the
parties make use of SMPC to compute the aggregates. Here, the obfuscated values are split into secret shares and
used to compute a suite of aggregates based on the attributes present in the NSO's survey data set. We consider
both numerical attributes, where the value represents some quantity, and categorical attributes, which assigns the
identi�er to one of a limited number of discrete classes. The goal here is to combine the micro-data from the two
sources and use the linked data set to compute the desired aggregates.

We model both organizations as semi-honest input parties. This means that they will follow the protocol
as outlined, but will always try to infer information about the other party's data. Not only are the identi�ers
considered sensitive, but so is the attached micro-data. The synthetic data sets used in this experiment are sized
and structured based on a typical data linkage with an NSO. In particular, the dataset held by the NSO is designed
to simulate a typical survey conducted by Statistics Canada, consisting of a few categorical attributes and a sample
weighting factor, which is used to estimate population-level statistics from the sample. Each record has been
given a random identi�er, designed to mimic numerical identi�ers given to citizens or businesses in some countries.
The secondary organization's dataset is simpler in design, with only a single numerical value, in addition to the
identi�ers. The sample survey conducted by the NSO had 60,000 respondents, while the secondary organization
has a dataset of about 380,000 individuals (Zanussi & Dugdale, 2022).

3.1 Protocol

The �rst step in the generic protocol, after having agreed on the security parameters such as bit-length, identi�ers,
payload, etc., is to use Cuckoo Hashing to sort sets into hash tables, essentially an indexed array, where a point is
put into the index corresponding to its value after hashing. In our scenario, we model the external organization as
the sender and the NSO as receiver. The next step is the use of OPPRF, which allows the parties to obfuscate their
data sets in a controlled but private way. The inputs to the OPPRF are the two hashed tables that the parties
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have obtained after the �rst step and the outputs are the obfuscated identi�ers and their associated attributes that
are present in the intersection of the two data sets.

The �nal step in our protocol is a secret sharing circuit that the parties evaluate cooperatively. It is worth not-
ing that in secret sharing, which is typically utilized in SMPC, the sensitive data is split into shares and distributed
among the participating computing parties to perform joint computations on distributed private data sets. At any
point, if a threshold number of parties would like to reconstruct the secret, they combine their shares of the secret to
produce the result. There are several secret sharing schemes that may be used such as Shamir's polynomial scheme,
which involves encoding a secret by interpolating a polynomial, Blakley's plane scheme, which involves intersecting
three planes in a point, Yao's garbled circuits, and what Demmler et al. (2015) calls arithmetic and boolean schemes.
For this project, we have utilized the ABY framework of Demmler et al. (2015), where the authors have found that
the arithmetic format is much faster than Boolean for the performance of simple arithmetic operations, like multi-
plication and addition. The operations, where the share format matters the most, are multiplication, multiplexer,
and comparison. We use both masking and multiplexer to mitigate the lack of conditional branching in ABY.

Table 1: The time and communication cost of the aggregation circuit. Aggregates are computed on identi�ers and
micro-data that have been obfuscated by the OPPRF protocols.

# Aggregates
Time (s) Data (MB)

Setup Online Setup Online

1 0.51 0.081 39.4 3.63
10 0.645 0.475 53.5 5.63
132 2.48 6.41 242 45.2

The results for a single aggregate, for ten aggregates, and for the full suite of 132 aggregates are given in Table 1.
The circuit involves an o�ine setup period that can be done independently by either party once the OPPRFs have
been run, and the SMPC circuit is run during an online phase where the parties need to be in direct communication
to complete the second step of the protocol. We have reported the communication exchanged in these periods as
well as the time taken to perform them. The protocol requires 11 communication rounds, which is the number of
times that the parties must exchange information in order to run the circuit.

4 Privacy preserving crowdsourcing

Federated Learning (FL) is a method for training an ML model using a distributed data set without sacri�cing
input privacy (Kairouz et al., 2021). Distinct data holders each train the model, e.g., a text classi�er, on their data
locally (on their own devices) and send the model updates to a central authority to be aggregated. For instance,
several hospitals, each in possession of chest x-ray images, collaborate to train a model for detecting lung disease
without the images ever leaving each hospital's servers. At a larger scale, this may help NSOs to explore the
feasibility of using privacy-preserving crowdsourcing for application to surveys on di�erent subject matter areas,
including those where the ability to collect data from users is di�cult. Similarly, users may be �ne with having
their data stored at one point in time but may wish to revoke access at another point in time. Thus, the question
arises as to how an NSO can work with sensitive data without viewing or acquiring it.

The idea is that an NSO can hold and host a centralized ML model on a server and have client-facing applica-
tions, such as web pages or mobile apps, to allow clients to input their data to be trained on, without the data ever
leaving the respondents' devices. Once respondents train the ML model locally, the central authority (i.e. an NSO)
can retrieve only the model weights to then aggregate into an updated centralized model. This process is repeated
such that a robust ML model can be trained and stored without needing to access or store any raw data from the
respondents. For sensitive topics, this will allow ML models to be trained on the private data without viewing or
accessing the data. Data pre-processing, such as cleaning and transformation, can be done prior to training on the
respondents' devices.

In this research project, we explore the feasibility of applying FL scenarios in a non-probabilistic crowdsourcing
survey, where the respondents' data never leaves their devices, e.g., mobile phones. The question we are focusing
on is: What if data owners can keep their data while a central authority, such as an NSO, is still able to use it?.
From a privacy perspective, a privacy-preserving crowdsourcing framework must allow the central authority to do
analytical work (e.g., train ML models) without needing to fetch raw data from respondents. From a security
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perspective, this framework should be robust against attacks aimed at discovering the trained model, unless access
is given, and against gaining insights on the respondents' data that has been used for training the model. This is
where the value of using privacy-preserving techniques that enforces trust, security, and privacy arises.

We develop a FL simulated environment with a publicly available data set on a social topic, i.e. cyberbullying,
and conduct various tests to demonstrate its e�ective operation within various crowdsourcing approaches. Two
frameworks are explored to evaluate how FL can be used on cyberbullying data within a crowdsourcing setting.
The �rst, an annotator framework, which indicates that using FL with a set of trusted data annotators can allow
an NSO to train a model with the annotated data while keeping the data on the annotator's side. The second
framework, a Semi-Supervised Federated Learning (SSFL) framework, allows unlabeled data to be used for training
while remaining on client devices.

Finding a good dataset for cyberbullying classi�cation is challenging, as Emmery et al. (2021) states, the
samples are under-powered in terms of accurately representing the substantial variation between social media
platforms, the positive instances are biased; only re�ecting a limited dimension of cyberbullying, and crowdsourcing
bullying content potentially decreases the in�uence of domain-speci�c language-use. In Van Hee et al. (2015,
2018), the authors compiled posts from ask.fm using web-scrapping, where users interact with each other by
posting questions and receiving answers. The researchers started with a seed pro�le list, which was used to select
related user pro�les and fetched all the posts for the augmented list. The corpus was then independently annotated
by trained linguists, where speci�c guidelines were designed to provide annotation rules to classify cyberbullying
activity, severity, category and roles. In our project, we use this data made available in an open repository that only
contains the cyberbullying �ag (yes or no). The encoded data was already pre-processed from raw text to numerical
features, namely tokenisation and stemming were already done, resulting in 871,044 features of the following types:
Word and character n-gram bag-of-words, term lists, subjectivity lexicon features and topic model features. This
dataset is heavily imbalanced, with less than 5% from 113,694 data points (posts) �agged as cyberbullying, which
is also a common problem of cyberbullying data sets.

4.1 Annotator Framework

This project focuses on employing FL in a crowdsourcing survey on a social topic to protect the privacy of the
input data, while allowing the study of the phenomenon. FL is a class of protocols which aims to train a ML model,
in particular a neural network, on input data that is owned by multiple parties (e.g., respondents), who want to
keep their data private. In FL, there is a central, not-fully-trusted, authority or server (e.g., crowdsourcing survey
owner, such as an NSO), who will assist the decentralized parties to train the ML model. More precisely, in FL,
each party holds an identical local copy of the neural network to train. They each perform one round of training
on their local devices, consisting of one or more epochs, with their private data and only send their model updates
(i.e. weights) to the authority. The authority coordinates these incoming gradients, which can be as simple as
aggregating them, and possibly instructs each of the parties on how to update their local models by combining
the insights gained by every party's data. The process then repeats for the desired number of rounds, until the
authority (and possibly every party) holds a trained version of the network. It is worth noting that the �nal
network and the training process reveals no more about the input data than the sequence of gradients computed
by each party (e.g., the respondents). Therefore, the respondents' sensitive data will always stay with them and
never be transferred to the central authority/server.

The �rst framework that is explored is the annotator FL framework in which trusted annotators, who are
subject matter experts regarding the selected domain, such as cyberbullying, can annotate samples which they will
receive/hold, without disclosing the data to the central authority, who is looking to train an ML model on that data.
As an example, an NSO may wish to train an ML model from data which multiple organizations, e.g., research
institutes, collect without seeing the sensitive data (for legal and privacy reasons). Thus, this framework assumes
that the other organizations can annotate their data and the NSO can request local training to be performed by
each organization to achieve training from each sensitive data source while maintaining both user privacy and the
organization's legal obligations.

Following the annotations, a server will request for the annotated data to be trained on the annotator's devices
to keep the data with the trusted annotators and to never provide the data to the remote server. The annotators
will train a model starting with the up-to-date weights which are stored on the server. The remote server will
receive the weights from the trained ML models following the local annotators' training, which are aggregated to
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Figure 3: The annotator framework in the privacy preserving crowdsourcing with federated learning.

then be stored on the server. This way, future requests for a classi�cation from the central model will use the
aggregated weights trained from the annotators. The annotator framework, as described above, is visualized in
Figure 3. Many di�erent techniques, such as homomorphic encryption and di�erential privacy, can be used in
combination with FL to further increase the privacy of the data being trained with (with a potential corresponding
cost to the communication, run time and memory usage of the centralized model).

To compare the e�ectiveness of FL when applied to this annotator framework, a baseline scenario is created
in which a centralized model is trained directly from the combined labeled data contained by each annotator.
This centralized approach requires access to the data directly and avoids maintaining the privacy of a user's data.
Through a comparative analysis, the results can provide insights into any observable pros and cons which may
occur with the FL approach (in particular, how well does the FL approach learn the minority class compared to
the baseline approach). The annotator framework shows strong results (shown in Table 2) on a simple model with
minimal tuning. This is a strong indication that a �rst step in testing implementations of FL can be to collaborate
with other organizations to develop a FL scenario based on some domain in which each organization can use their
data to derive a centralized robust ML model. This can provide a concrete step in integrating FL into a deployed
example within the government while being easier to integrate when compared to the SSFL approach.

This still requires signi�cant planning from all parties to come to a mutual agreement regarding the annotation
strategy to be taken and the requirements of the annotators themselves. If the data is already annotated, discussions
must be held to determine how the data is annotated and whether it can be used within the target annotation
strategy. Under the right planning based on the target domain, the annotation strategies prepared, and the data to
be annotated, both the feature space and annotation strategies can coincide among organizations. A project such
as this will provide a more concrete code base to work in future projects and test beyond simulation environments,
which do not consider how to integrate the code into actual products.

4.2 Semi-Supervised Federated Learning

The second framework is the semi-supervised FL approach, in which all data is unlabeled and maintained on
respondents' devices. In this framework, the central authority must be able to classify the data on respondents'
devices prior to training without viewing the data and without annotators. To accomplish this, semi-supervised
learning (SSL) is used to assign labels to the data on respondents' devices. Once the data is labeled, the FL approach
can continue as normal. Unlike the annotator approach, this approach is realistic in large-scale crowdsourcing e�orts
in which users may provide data for training with their devices via some web page or application that allows the
training to be performed exclusively on their device, with input privacy guarantees. An overview of the SSFL
framework is presented in Figure 4.

Despite the considerable number of SSL training methodologies, the approach used for this framework is simple
and extendable to more complex approaches. The concepts used to derive the approach are based on the SSL
overview presented by Ouali et al. (2020). Within the scope of this project, �rst, a small subset of collected data
must be used to derive a pre-trained centralized model, which will be distributed to respondents. This initial model
must be trained with quality data that can generalize well when sent to clients and should be tested with an isolated
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Figure 4: The Semi-Supervised Federated Learning framework in the privacy preserving crowdsourcing.

testing set, which has been collected. Alongside this initial model, an unsupervised ML algorithm should be �t
with the same training data. This algorithm will be used to group samples held by respondents into clusters to
help identify similarities and dissimilarities between the samples. As with the initial model, the selected clustering
algorithm and the hyperparameters used for the selected model must be robust enough to create a well-trained
model. The clustering algorithm will be sent to clients just as the initial model will, but will not be updated unless
the central authority or trusted annotators have data that can be used to further improve the model.

With the initial models in place, the conventional FL approach is used to distribute the pre-trained model's
weights to the clients for it to be further trained with their unlabeled input data on the respondents' devices. The
SSL approach begins by deserializing the provided clustering algorithm and using it to cluster each sample, which
can be used to train the provided model. Each clustered sample is then run through the provided ML model to
receive a class prediction for the sample. With the predictions assigned to each sample and with each sample
clustered, the SSL approach applies a chosen voting mechanism to assign each cluster of samples the same label.
Since clusters indicate similarity between the samples, assigning one prediction to all samples in a cluster may help
to remove issues when the preliminary predictions may not be completely accurate on the unseen data. This voting
mechanism can be robust by using con�dence outputs from the provided predictions to then use within a weighted
majority vote system. However, the approach that is used within the scope of this project is a simple majority
vote without using a prediction's con�dence.

Now each sample will contain a label to be used for training. However, some transformations are applied to
the data to avoid training the model with the initial data using the model's own predictions (which avoids learning
new information). This transformed data and the corresponding labels are then used in training and the process
continues for all batches and for each respondent requested to train the model. The model weights are then sent
back to the server to be aggregated and the server will test how the model now performs on the isolated test set. If
the change is positive it can be committed, but if the change is negative, the server can decide whether to keep the
model, or store the previous model in case it is needed, or drop the newly trained model. This process is continued
until a desired level of performance in achieved. This approach acts as a starting point which can be extended and
tuned appropriately.

To summarize, this project explored FL as a privacy-preserving technique to allow for ML models to be trained
with data that remains on the respondent's device. This approach is applied on cyberbullying data to understand
its e�ectiveness and feasibility when applied to a task using sensitive data. Two frameworks have been explored to
evaluate how FL can be used on cyberbullying data within a crowdsourcing setting, with the summarized results
presented in Table 2. The �rst, an annotator framework, indicates that using FL with a set of trusted data
annotators to allow an NSO to train with the annotated data while maintaining the data on the annotator's side
has a positive impact on both performance and privacy. These strong results come with minimal tuning and a
simple model, indicating stronger performance when tuned further. The second framework, an SSL FL framework,
allows unlabeled data to be used for training. A basic SSL approach has been applied to the framework and is
found feasible to implement. Both tuning and testing is required for this approach to be e�ective. A combination of
the annotator and SSL approaches may yield the most success in a production environment and should be further
considered. Overall, this work highlights the potential bene�ts of using FL, the techniques which can be used in
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di�erent applications, and the di�culties of applying the technique beyond simulation settings. In combination
with other privacy-preserving techniques, FL is a signi�cant tool that could greatly bene�t NSOs to work with
sensitive data, since the data does not get collected.

Table 2: Summary of results (optimal test performance) for the minority class (i.e. when the text is classi�ed
to be cyberbullying) in both the FL Annotator and Semi-Supervised Learning frameworks. In both cases, 5-fold
cross validation was performed and each fold was balanced with data augmentation techniques, e.g., over or under
sampling the classes.

FL Framework Accuracy Precision Recall F1-score

Annotator Framework 0.96 0.62 0.59 0.60
Semi-Supervised Learning 0.96 0.85 0.22 0.34

5 Conclusions and Outlook

In conclusion, there are many promising opportunities for PETs, as enablers, to be used at both ingestion and
dissemination points at NSOs. Hence, we believe that it is an ideal time to conduct more research projects on
PETs now. To unleash the power of sensitive data, PETs are being deployed in many sectors, ranging from the
�nancial services to healthcare, pharmaceuticals, telecommunication and government bodies, etc. On the non-
technical side, lack of wide-spread knowledge, for instance about their advantages, limitations, risks, costs and
impact on operational routines, longer term experience with them and trust to the technology are the major
roadblocks to the wider adoption of PETs. Adopting any new technology is in fact a combination of technical,
legal and social aspects that will each need to be addressed on a case-by-case basis (at least in the beginning) to
pave the way for large-scale adoption.

Moving forward, we plan to continue exploring PETs, e.g., multi-party PPRL and synthetic data, with the goal
of moving them to production in the near future. This is a fast evolving space and according to Gartner, �by 2025,
60% of large organizations will use one or more privacy-enhancing computation techniques in analytics, business
intelligence or cloud computing, an increase of 10% since last year's report� (Willemsen et al., 2022). Policies and
regulations will need to evolve to envision operations in the presence of PETs, e.g., data access or data sharing,
and we need to work together with those who are involved in the legal space to facilitate this vision. Last but not
least, transparency, communication and social license from the public are the key factors and more work on these
areas are still required to �ll the gap between the legal and social licenses.
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