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MEASURING THE ACCURACY OF A PREDICTION FOR
A FINITE POPULATION MEAN
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ABSTRACT

For timeliness and cost reduction, a statistical agency may predict a mean by modeling future responses
based on past responses and fixed covariates, e.g., predicting the yield of crops based on remote sensing
and agro-climatic data. Such a prediction may resort to different methodologies, from simple linear
predictors to complex predictors based on machine learning techniques, including random forests,
boosted trees or deep learning. When doing so, the loss can be measured by the mean square error to
compare different predictors or report the prediction accuracy. However estimating the mean square
error of a predicted mean is challenging with complex predictors. To address this issue without being
tied to a specific prediction methodology, it is proposed to bootstrap the past and future responses
based on the residuals while holding the covariates fixed.
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RÉSUMÉ

Pour l’actualité et la réduction des coûts, une agence statistique peut prédire une moyenne en
modélisant les réponses futures selon des réponses antérieures et des prédicteurs, dont les valeurs
sont fixées, par exemple en prédisant le rendement des cultures à l’aide de données de télédétection et
d’ordre agro-climatique. Une telle prédiction peut faire appel à diverses méthodologies, des prédicteurs
linéaires simples jusqu’aux prédicteurs complexes, basés sur des techniques d’apprentissage automa-
tique, dont des forêts aléatoires, des arbres de décision optimisés ou l’apprentissage profond. Dans ce
cas, on peut mesurer la perte par l’erreur quadratique moyenne afin de comparer différents prédicteurs
ou rapporter l’exactitude de la prédiction. L’estimation de l’erreur quadratique moyenne d’une
moyenne prédite est cependant difficile avec des prédicteurs complexes. Pour répondre à ce problème
sans se contraindre à une méthodologie de prédiction spécifique, nous proposons un bootstrap des
réponses passées et futures basé sur les résidus, tout en fixant les valeurs des prédicteurs.

MOTS CLÉS : exactitude, mesure de l’incertitude

1 INTRODUCTION

For timeliness, a statistical agency may predict a total by modeling future responses based on past responses
and fixed covariates. For example, Statistics Canada predicts the yield of crops based on remote sensing
and agro-climatic data (Statistics Canada 2020). Such predictions must be published with a measure
of their accuracy or uncertainty for the data users, even when they are based on sophisticated machine
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learning techniques. However, cross-validation (Hastie et al. 2001, chap. 7.10) and other similar approaches
(Lei et al. 2018) are inadequate for two reasons. The first reason is that they assume that the covariates
are random, while data users have come to expect a measure of the uncertainty that is conditional on the
observed covariates. The second reason is that they focus on the uncertainty of a single prediction. To
address the problem without being tied to a specific prediction methodology, it is proposed to bootstrap
the past and future responses based on the residuals while holding the covariates fixed. The remaining
sections describe the notation and assumptions, methodology, simulations and conclusions, in this order.

2 NOTATION AND ASSUMPTIONS

We consider two finite populations, where each unit is associated with fixed covariates and a continuous
response and the responses from the different units are mutually independent within each population and
across the two populations. For t = 1, 2, population t has Nt units, where unit i is associated with the
fixed covariates xti, the response Yti and the weight ati such that

∑Nt

i=1 ati = 1. When predicting the yield
of a crop, a unit is a field and the weight is proportional to the field area. Let µ(.) and σ2(.) denote the
common mean and variance functions for both populations, i.e., µ (xti) = E [Yti] and σ2 (xti) = var (Yti)
for t = 1, 2 and i = 1, . . . , Nt. The responses are supposed to be of the form

Yti = µ (xti) + σ (xti) ϵti, (1)

where the errors ϵ11, . . . , ϵ1N1 , ϵ21, . . . , ϵ2N2 are independent and identically distributed with a zero mean
and a unit variance.

In the first population, the covariates and responses are observed. In the second population, only the
covariates are observed. Using the data from the first population, the mean function is estimated by µ̂(.)

and the mean Y 2 = a21Y21 + . . .+ a2N2Y2N2 is predicted by Ŷ 2 = a21µ̂(x21) + . . .+ a2N2µ̂(x2N2). Our goal

is to evaluate the mean square error of this prediction, i.e., E

[(
Ŷ 2 − Y 2

)2
]
.

3 METHODOLOGY

It is proposed to generate bootstrap responses in each population, while all the covariates are held fixed.

Let
[
Y

(b)
ti

]
1≤i≤Nt

denote the bootstrapped responses for population t in repetition b. Also let Y
(b)

2 and Ŷ
(b)

2

denote the actual mean and the predicted mean for the second population in this repetition. Then, the
mean square error may be estimated by

Ê

[(
Ŷ 2 − Y 2

)2
]
=

1

B

B∑
b=1

(
Ŷ

(b)

2 − Y
(b)

2

)2

, (2)

where the bootstrap mean is Y
(b)

2 = a21Y
(b)
21 +. . .+a2N2Y

(b)
2N2

. The above estimator may be computed because
the actual mean of the second population is known in each bootstrap repetition. When the variance function
is known and the errors are known to have a standard normal distribution, the bootstrapped responses
may be generated according to

Y
(b)
ti = µ̂(xti) + σ(xti)ϵ

(b)
ti , t = 1, 2, i = 1, . . . , Nt, (3)

where ϵ
(b)
ti is drawn according to the standard normal distribution. When the error distribution is un-

known, the bootstrap errors may be based on resampling the residuals (Y11 − µ̂(x11))/σ (x11) , . . . , (Y1N1 −
µ̂(x1N1))/σ (x1N1) (Efron 1979). The prediction model is applied to the bootstrap responses from the
first population to obtain the bootstrap estimate µ̂(b)(.) of the mean function and the predicted mean

Ŷ
(b)

2 = a21µ̂
(b)(x21) + . . .+ a2N2µ̂

(b)(x2N2).

2



4 SIMULATIONS

Setup: The simulations are based on crop yield data for spring wheat in Alberta, Manitoba and Saskatchevan,
from 2001 to 2018, including N2 = 35 observations in 2018 and N1 = 584 observations in prior years. The
data includes five covariates about the vegetation and the temperature. Three scenarios are considered
where the covariates are based on the actual covariates and the responses are generated according to Eq. 1.
The simulations are based on 1,000 repetitions and 1,000 bootstrap samples in each repetition. In the first
scenario, the mean function is linear (i.e., µ(x) = x⊤β), the variance is constant, and β and σ2 are chosen
by fitting a linear model with homoschedastic variance estimated to the actual data. The prediction model
is linear, and the bootstrap procedure is based on a linear model or a random forest, where the latter is
built with the R package Ranger (Wright & Ziegler 2017) using 2 or 5 splitting variables (i.e., mtry=2,5
in Ranger) and the default number of trees, which is 500. When fitting the random forest, the minimum
node size (i.e., min.node.size in Ranger) is selected through a search on a grid, which includes all the
values between 5 and 70 by increment of 5 as well as the values 100, 150, 200 and 300. In the second
scenario, the mean function is based on fitting a random forest with 2 splitting variables to the actual data
(including the responses). The prediction model is based on a random forest, and the bootstrap procedure
is based on a linear model or a random forest that is parametrized as in the first scenario. The third
scenario is identical to the second scenario, except that the prediction model is linear. In all the scenarios,
the variance is constant and known and ϵti has a standard normal distribution. The performance of the
estimated mean square error of the predictor is evaluated by the relative difference when compared to its
Monte Carlo mean square error.
Results: The results appear in Figs. 1-3, where the yellow dot indicates the relative bias of the estimated
mean square error.

In the first scenario, the linear bootstrap estimates the mean square error with a small variance and a
moderate relative bias (-8.8%), while the random forest bootstrap estimates the mean square error with a
large bias and a large variance. In the latter case, the estimator has a better performance when using 5
instead of 2 splitting variables, even if the bias and variance remain large. These results may indicate that
there are too few data points.

In the second scenario, the random forest bootstrap estimates the mean square error with a small
variance and a small relative bias (5.5%), when using two splitting variables. However, with five splitting
variables, the variance is large as well as the relative bias (128.4%). With the linear bootstrap, the variance
is large as well as the relative bias (345.6%).

In the third scenario, the random forest bootstrap has a small relative bias (-5.2%) with two splitting
variables, but a large relative bias (37.6%) with five splitting variables. In both cases, the variance is
large and there are extreme values, which explains why the yellow dot is outside the box in the plot when
using five splitting variables. As for the linear bootstrap, it has a large relative bias (-30.3%) but a small
variance.

Overall, the best performance is obtained when the bootstrap model reflects the actual distribution of
the responses. With the random forest bootstrap, the variance may be large.
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Figure 1: Box plots for the first scenario.

Figure 2: Box plots for the second scenario.

Figure 3: Box plots for the third scenario.
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5 CONCLUSIONS AND FUTURE WORK

A bootstrap methodology was proposed to estimate the mean square error of a predicted mean when
conditioning on the observed covariates. In the simulations, the resulting estimator performs better when
the bootstrap and population models are close. Also, when the bootstrap is based on a random forest, the
variance may be large, which may be an indication that there are too few data points. Future work will
experiment with other nonlinear mean functions and with larger datasets.

6 DISCLAIMER

The content of this paper represents the authors’ opinions and not necessarily those of Statistics Canada.
It describes theoretical methods that may not reflect those currently implemented by the Agency.
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