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ABSTRACT

Duplicate records are records from the same unit in a given data source, regardless of whether they
are identical. Their identification is required when the source is used to produce official statistics, such
as a sampling frame or a census. To date, many Bayesian models have been described to perform this
task in an automated manner. Yet, they involve computer-intensive procedures and tend to assume
that the linkage variables are conditionally independent, when this is seldom the case in practice.
To overcome these limitations, a new model is described for applications, where one can reasonably
assume that each unit is associated with at most two records because duplication is rare, as in the
private dwellings of the census of population. The duplication is modeled through the number of links
from a given record as in a recent model of linkage errors, while extending the latter to account for
the multiplicity of false positives from some other unit.
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RÉSUMÉ

Les enregistrements en double proviennent de la même unité dans une source de données précise, qu’ils
soient identiques ou non. Il est nécessaire de les identifier lorsque la source est utilisée pour produire
des statistiques officielles, comme c’est le cas pour une base de sondage ou un recensement. À ce
jour, plusieurs modelès bayésiens ont été décrits afin de réaliser cette tâche de manière automatisée.
Cependant, ils nécessitent des procédures informatiques intensives et font généralement l’hypothèse
que les variables de couplage sont conditionnellement indépendantes, alors que c’est rarement le cas
dans la pratique. Pour pallier ces limites, nous décrivons un nouveau modèle pour les applications
où on peut raisonnablement supposer que chaque unité est associée à au plus deux enregistrements,
parce que les doublons sont rares, comme c’est le cas pour les personnes vivant dans les logements
privés, dans le cadre du recensement de la population. Nous modélisons la duplication par le nombre
de liens issus d’un enregistrement donné, comme dans un modèle récent des erreurs de couplage tout
en généralisant ce dernier afin de tenir compte de la multiplicité des faux positifs provenant d’une
autre unité.

MOTS CLÉS : résolution d’entité, appariement, déduplication

1 INTRODUCTION

In a file, two records are called duplicates if they refer to the same unit (e.g. a person, a household or a
business), regardless of whether they are identical. Various problems arise when a file contains unknown
duplicate records. In a sampling frame, they increase the response burden. In a population census or a
register, they produce some over-count (Statistics Canada 2019). To avoid such problems, the common
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solution consists in identifying the duplicate records by linking the file to itself. However linkage errors
arise when linking with quasi-identifiers such as names, dates or postal codes. These errors include the
false negatives (FN) and the false positives (FP), where a false negative is failing to link records from
the same unit and a false positive is linking records from different units. When one is deduplicating a
file, false negatives mean that some duplicate records remain, while false positives lead to under-coverage.
Measuring these errors is critical to optimize the linkage decisions and report the quality of the deduplicated
file. However it is a challenge. One solution uses clerical reviews, i.e. the visual inspections of a probability
sample of record pairs to determine if they are from the same unit (Dasylva et al. 2016). Clerical reviews
are also used to estimate the proportion of duplicate records in the Canadian census (Statistics Canada
2019). However they are best avoided due to their high cost. An alternative solution is to use a Bayesian
model of entity resolution as suggested by Fortini et al. (2001), Tancredi & Liseo (2011), Steorts et al.
(2016) or Sadinle (2017). However this approach has two major drawbacks. In addition to being computer
intensive, all the Bayesian models to date assume that the linkage variables are conditionally independent
or uncorrelated, which may be untrue in practice according to Newcombe (1988), Blakely & Salmond (2002)
and Belin & Rubin (1995). To overcome these limitations, a new model is proposed for applications, where
one can reasonably assume that each unit is associated with at most two records because duplication is
rare, as in the private dwellings of the census of population. This model extends previous work by Dasylva
& Goussanou (2020, 2021, 2022).

The remaining sections describe the notation and assumptions, theory, data experiment and conclusion,
in this order.

2 NOTATION AND ASSUMPTIONS

This work considers a large finite population and a file, which is based on a Bernoulli sample from this
population. Within the file, each unit is associated with one or two records. To identify the duplicate
records the file is linked to itself such that the decision to link two given records involves no other records.
The following paragraphs provide further details.

Finite population and file: Consider a finite population of N units and a Bernoulli sample s that is drawn
from this population with the inclusion probability τ not depending on N . The file is generated by
associating ri records with typographical errors to unit i. With a positive probability, two records are
generated. Otherwise, a single record is produced. The file is identified with the subset {(i, j) s.t. i ∈
s, 1 ≤ j ≤ ri} from {1, . . . , N} × {1, 2}. For unit i ∈ s, the related records are denoted by V(i,1), . . . , V(i,Ri)

that live on the record space VN , which may be discrete or continuous. Let DN denote a subset of VN ,
which is of special interest (e.g. a post-stratum), and let φN denote the corresponding subset of the file,
i.e. φN = {(i, j) s.t. i ∈ s, 1 ≤ j ≤ ri and V(i,j) ∈ DN}. Also let δ = P

(
ri = 2|i ∈ s, V(i,1) ∈ DN

)
and

µ = E
[
ri|i ∈ s, V(i,1) ∈ DN

]
= 1+δ, which are assumed to not depend on N . The file and record generation

mechanism are assumed to be such that
[(
I(i ∈ s), ri,

[
V(i,j)

]
1≤j≤ri

)]
1≤i≤N

are independent and identically

distributed, and V(i,1) and V(i,2) are identically distributed given that i ∈ s and ri = 2. Also suppose that
the joint distribution of I(i ∈ s), ri and

[
I(V(i,j) ∈ DN)

]
1≤j≤ri

does not depend on N .

Linkage: For distinct (i, j) and (i′, j′), let L(i,j)(i′,j′) denote the indicator of a link between V(i,j) and V(i′,j′).
The linkage is assumed to be such that L(i,j)(i′,j′) is only a function of V(i,j) and V(i′,j′), i.e. L(i,j)(i′,j′)

is independent of all the other information (including s, [ri]i∈s, the other record values, and the linkage
decisions at the other record pairs), given V(i,j) and V(i′,j′). It is further assumed that the linkage decisions
are symmetric, i.e. L(i,j)(i′,j′) = L(i′,j′)(i,j).

Linkage errors: These errors are unavoidable when linking with quasi-identifiers, including false negatives
and false positives, where a false negative is failing to link records from the same unit and a false positive
is linking records from different units. For completeness, define a true positive as linking two records from
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the same unit and a true negative as not linking two records from the different units. These different pair
types are equivalently defined by calling a pair matched if its two records are from the same unit, and
calling it unmatched otherwise. Then a false negative is a matched pair that is not linked, a false positive
is an unmatched pair that is linked and a true positive is a matched pair that is linked. Let TP , FN and
FP respectively denote the numbers of true positives, false negatives and false positives, for the pairs that
involve at least one record from φN . For these pairs, the linkage errors may be assessed by the recall equal
to TP/(TP + FN) and the precision equal to TP/(TP + FP ). According to Blakely & Salmond (2002)
and Dasylva & Goussanou (2020, 2021, 2022), the recall and precision may be estimated by modeling the
number of links from a given record, when linking a file to a complete census. The resulting solutions have
the advantage of dispensing with assumptions about the dependence of the linkage variables, e.g. their
conditional independence (Fellegi & Sunter 1969). To extend this approach to the current setting means
modeling the number of links from V(i,j) for (i, j) ∈ φN . To this end, define n(i,j)|M =

∑ri
j′=1: j′ 6=j L(i,j)(i,j′),

n(i,j)|U =
∑

i′∈s−{i}
∑ri′

j′=1 L(i,j)(i′,j′) and n(i,j) = n(i,j)|M + n(i,j)|U .

Regularity conditions: To extend the model from Dasylva & Goussanou (2020, 2021, 2022) one must also
extend the regularity conditions that are assumed therein. For v ∈ VN , define

µN(v) = E
[
ri| i ∈ s, V(i,1) = v

]
, (1)

pN(v) = µN(V(i,1))
−1E

[
I(ri = 2)riL(i,1)(i,2)

∣∣ i ∈ s, V(i,1) = v
]
, (2)

λkN(v) =
2∑
t=k

P

(
ri′ = t,

ri′∑
j′=1

L(i,1)(i′,j′) = k

∣∣∣∣∣ {i, i′} ⊂ s, V(i,1) = v

)
, k = 1, 2, (3)

with the convention that pN(v) = 0 if µN(v) = 0. The first proposed condition imposes an upper-bound
on the expected number of false positives for any record in DN based on

(N − 1) sup
v∈DN

max (λ1N(v), λ2N(v)) ≤ Λ, (4)

where Λ does not depend on N . The second condition imposes an invariant (with respect to N) conditional
joint distribution of µN(V(i,1)), pN(V(i,1)), (N − 1)λ1N(V(i,1)) and (N − 1)λ2N(V(i,1)) given that i ∈ s and
V(i,1) ∈ DN , with F () denoting this invariant distribution, i.e.(

µN(V(i,1)), pN(V(i,1)), (N − 1)λ1N(V(i,1)), (N − 1)λ2N(V(i,1))
)∣∣ {i ∈ s, V(i,1) ∈ DN} ∼ F (). (5)

3 THEORY

The main result of this communication is a theorem stating the convergence in distribution of the number
of links from a given record, under the proposed regularity conditions. It also provides the basis for the
proposed model. After stating the theorem, the following paragraphs describe the implications for the
estimation of the linkage errors and the proportion of duplicate records.

Limiting distribution: Let (I, J) be drawn uniformly from φN and define

ñM = I (|φN | ≥ 1)
∑

(i,j)∈φN

I ((I, J) = (i, j))n(i,j)|M ,

ñU = I (|φN | ≥ 1)
∑

(i,j)∈φN

I ((I, J) = (i, j))n(i,j)|U

and ñ = ñM + ñU . The following theorem states the convergence in distribution of (ñM , ñU) (and thus of
ñ) based on the convergence of the characteristic function of (ñM , ñU), which is defined as

H(ω1, ω2) = E
[
e(ω1ñM+ω2ñU )

]
, ω1, ω2 ∈ IR,
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where  is the complex number such that 2 = −1. The limiting distributions involve two related families of
discrete distributions, which are hereafter called base distributions. The first family is denoted by F1 and
comprises the discrete univariate distributions that correspond to a random variable of the form X+Y +2Z,
where X, Y and Z are mutually independent, X ∼ Bernoulli(p), Y ∼ Poisson(ν1) and Z ∼ Poisson(ν2),
for p ∈ [0, 1] and ν1, ν2 ≥ 0. For such a member distribution, the probability mass function is given by

q (t; p, ν1, ν2) = e−ν1−ν2

(
I(t = 0)(1− p) + I(t > 0)

(
(1− p)

bt/2c∑
k=0

νt−2k
1

(t− 2k)!

νk2
k!

+ p

b(t−1)/2c∑
k=0

ν
(t−1)−2k
1

((t− 1)− 2k)!

νk2
k!

))
,

t = 0, 1, 2, . . . . (6)

The second family is denoted by F2 and comprises the discrete bivariate distributions that correspond to
random bivariate vectors of the form (X, Y + 2Z), with X, Y and Z as given above. For such vectors, the
characteristic function is of the form

E
[
e(ω1X+ω2(Y+2Z))

]
= [1 + p (eω1 − 1)] exp

(
ν1 (eω2 − 1) + ν2

(
e2ω2 − 1

))
, ω1, ω2 ∈ IR, (7)

where  is the complex number such that 2 = −1. The theorem proof is found in the appendix.

Theorem 1 Under Eqs. 4-5

lim
N→∞

H(ω1, ω2) =

∫
(µ,p,λ1,λ2)∈[0,1]2×[0,Λ]2

(1 + p (eω1 − 1)) exp

(
τ

2∑
k=1

λk
(
ekω2 − 1

))
(µ/µ)dF (µ, p, λ1, λ2).

(8)
Thus ñ converges to a mixture of distribution from F1 and (ñM , ñU) converges in distribution to a mixture
of distributions from F2.

An important special case is when F () is concentrated at a single atom. It corresponds to homogeneous
records, when the limit distribution of ñ is a base distribution from F1. Another important special case is
when F () is discrete with finitely many atoms. In this case, the limiting distribution is a finite mixture of
base distributions from F1. For a finite mixture with G components, let αg and (pg, ν1g, ν2g) respectively

denote the mixing proportion and the parameters for the g-th component. Also define p =
∑G

g=1 αgpg and

νl =
∑G

g=1 αgνlg for l = 1, 2. Given G, the [(pg, ν1g, ν2g)]1≤g≤G parameters may be estimated by maximizing
the composite likelihood of the n(i,j)’s for (i, j) ∈ φN .

Implications for the linkage errors: Measuring the errors without manual interventions is required to
optimize the parameters of automated linkage procedures, which may be deterministic, hierarchical or
probabilistic (Fellegi & Sunter 1969). Such measures may be obtained by applying a model based on the
limiting distribution since the parameters of this distribution are related to the recall and the precision.
Indeed note that the above theorem implies the following limits

lim
N→∞

E [ñM ] =

∫
(µ,p,λ1,λ2)∈[0,1]2×[0,Λ]2

p(µ/µ)dF (d, p, λ1, λ2),

lim
N→∞

E [ñU ] =

∫
(µ,p,λ1,λ2)∈[0,1]2×[0,Λ]2

τ (λ1 + 2λ2) (µ/µ)dF (µ, p, λ1, λ2).

Suppose that |φN |−1FP = |φN |−1
∑

(i,j)∈φN n(i,j)|U and |φN |−1TP = |φN |−1
∑

(i,j)∈φN n(i,j)|M converge in

probability to limN→∞E [ñU ] and limN→∞E [ñM ], respectively. Since

TP + FN =
N∑
i=1

ri∑
j=1

I(i ∈ s, ri = 2, V(i,j) ∈ DN),

|φN | =
N∑
i=1

ri∑
j=1

I(i ∈ s, V(i,j) ∈ DN),
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TP + FN and |φN | are iid sums, which satisfy the law of large numbers, so that

TP + FN

|φN |
p−→

E
[∑ri

j=1 I(i ∈ s, ri = 2, V(i,j) ∈ DN)
]

E
[∑ri

j=1 I(i ∈ s, V(i,j) ∈ DN)
] =

2δ

1 + δ
.

By continuity, it easily follows that

TP

TP + FN

p−→
(

2δ

1 + δ

)−1 ∫
(µ,p,λ1,λ2)∈[0,1]2×[0,Λ]2

p(µ/µ)dF (d, p, λ1, λ2), (9)

TP

TP + FP

p−→

∫
(µ,p,λ1,λ2)∈[0,1]2×[0,Λ]2

p(µ/µ)dF (d, p, λ1, λ2)∫
(µ,p,λ1,λ2)∈[0,1]2×[0,Λ]2

(p+ τλ1 + 2τλ2) (µ/µ)dF (µ, p, λ1, λ2)
. (10)

When the limiting distribution is a finite mixture such that ñ∼̇
∑G

g=1 αgq(.; pg, ν1g, ν2g), the recall (i.e.

TP/(TP + FN)) converges to (2δ/(1 + δ))−1p while the precision (i.e. TP/(TP + FP )) converges to
p/(p + ν1 + 2ν2), and the proportion of records with a duplicate that is linked (i.e. TP/|φN |) converges
to p. The above results show that knowing δ is not required to estimate the precision but it is needed for
the recall. Conversely δ may be estimated if the recall is given. Even when δ is unknown, the estimate of
p can still be used to compare the recalls for different linkage strategies.

Applications: The model may be used for two applications. In the first application, it is used to estimate
the linkage accuracy when deduplicating a file, where the proportion of duplicate records (i.e., 2δ/(1 + δ))
is known. In this case, the measured accuracy (including the precision and recall) is useful for optimizing
the linkage and reporting the quality of the deduplicated file, in terms of residual duplication and under-
coverage. In the second application, the recall is known and the goal is estimating the proportion of
duplicate records. For example one may assume a recall of 1.0 if applying a linkage rule that is deemed
sufficiently lax. In a probabilistic linkage, such a rule may consist in linking all the pairs that meet the
blocking criteria, i.e., computer-efficient criteria for selecting a manageable subset of the Cartesian product
(comprising all the possible pairs) where most matched pairs are expected to be found (Statistics Canada
2017). The proposed methodology serves both applications by providing a way of estimating the precision
and the proportion of records with a duplicate that is linked (i.e.,p), where the latter is the product of
the recall by the proportion of duplicate records. Thus the success of the methodology depends on how
accurately it estimates p and the precision. This is evaluated with public data from the 2010 US Census
of population in the next section.

4 DATA EXPERIMENT

Setup: The experiment involves the creation of 100 synthetic populations with N = 1, 000, 000 persons
with the surname and the birth date based on public data for the 2010 US Census of population, according
to Dasylva & Goussanou (2022). For each population, a complete census is created with duplicate records
based on δ = 0.02, 0.1 and typographical errors. The experiment follows Dasylva & Goussanou (2022)
except for the addition of duplicate records in the census. When two records are generated for a unit,
they are generated to be conditionally independent given the true surname and birth date. However this
does not imply that these variables are conditionally independent within a record pair. The records are
linked based on having the same surname and birth date. To estimate the linkage errors, the records are
placed in post-strata based on the log-frequency of the surname (in base 10), and the homogeneous model
is fitted within each post-stratum by maximizing the composite likelihood of the n(i,j)’s. For simplicity,
the surname frequency is given and set to the empirical census frequency, i.e., it is not re-estimated in each
repetition. In practice, one would have to estimate the surname frequency from the data.
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Results: They appear in Table 1, where it can be seen that the bias and the variance increase with
the frequency but decrease with δ. This is expected because a link from a record with a rare surname
provides more evidence that there is a duplicate than if the surname is popular. In the latter case, there
is a greater chance than the record is linked to a record from a different person, who just happens to
have the same surname. Even then, the bias is quite large for the post-stratum with the most frequent
surnames when δ = 0.02. This corresponds to a worst-case situation where the proportion to be estimated
is small, the related events (whether there is actually a duplicate record) are not directly observed and
the fraction of missing information according to Louis (1982) is large because the linkage variables provide
little discrimination. Practical solutions exist for estimating such small proportions when the successes are
directly observed. In this case, one replaces the goal of computing an accurate point estimator with the
more attainable one of finding a confidence interval with good coverage, e.g., the exact interval by Clopper
& Pearson (1934). Yet this approach cannot be applied here. One possible remedy is using variables with a
greater discriminating power, e.g., combining the given names (one or more), surnames (one or more), birth
date, province and postal code as in the over-coverage study for the Canadian Census (Statistics Canada
2019, chap. 8.2.1). When the goal is estimating the proportion of duplicate records (i.e. 2δ/(1 + δ)) under
the assumption of a perfect recall (i.e., a recall of 1.0), another solution is to assume that δ is uniform across
the post-strata and estimate p = 2δ/(1 + δ) (e.g., their average) within the post-strata with less frequent
surnames. Note that this latter solution has the major advantage of dispensing with clerical reviews that
are costly.

Table 1: Results of the data experiment.

δ = 0.02 δ = 0.1
Measure log-frequency of the surname Bias(%) Variance Bias (%) Variance
proportion of records with a duplicate that is linked -6 0.003 3.72E-04 -0.098 1.49E-06

-5 -0.910 3.84E-04 0.022 7.58E-07
-4 -4.106 7.22E-03 -0.165 1.89E-06
-3 28.196 3.26E-01 1.080 1.25E-05

precision -6 -0.021 4.40E-05 -0.012 5.06E-07
-5 -0.835 3.65E-04 -0.003 4.42E-06
-4 -4.164 8.45E-03 -0.123 4.44E-05
-3 28.122 9.24E-02 1.059 3.23E-04

5 CONCLUSION

This work has described a joint model for the duplication and the linkage errors within a file, where each
unit has at most two records and the decision to link two records involves no other record. With this model,
one may estimate the precision, the proportion of records with a duplicate that is linked, the recall for a
known proportion of duplicate records and the proportion of duplicate records for a known recall. Like
the model from Dasylva & Goussanou (2020), which it extends, it accounts for the records heterogeneity
and the interactions among the linkage variables implicitly. Future work will aim at reducing the bias of
the resulting estimators for small values of δ by considering linkage variables with a greater discriminating
power. It will also look at extending the model to more general settings, where a unit may be associated
with three or more duplicate records.

6 DISCLAIMER

The content of this paper represents the authors’ opinions and not necessarily those of Statistics Canada.
It describes theoretical methods that may not reflect those currently implemented by the Agency.
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A PROOF OF THE THEOREM

We have E[|φN |] = E
[
I(i ∈ s, V(i,1) ∈ DN)ri

]
N . It is also easy to show that there exist ε ∈ (0, 1) and

c > 0 such that

P (||φN | − E[|φN |]| > N ε) = O
(
e−N

c)
.
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Thus

H(ω1, ω2) = P (|φN | = 0) + E

[
I (|φN | ≥ 1)

|φN |

N∑
i=1

ri∑
j=1

I(i ∈ s, V(i,j) ∈ DN)eω(ω1n(i,j)|U+ω2n(i,j)|U)

]

=
E
[∑N

i=1

∑ri
j=1 I(i ∈ s, V(i,j) ∈ DN)eω(ω1n(i,j)|U+ω2n(i,j)|U)

]
E [|φN |]

+ o(1)

=
NE

[
I(i ∈ s, V(i,1) ∈ DN)rie

(ω1n(i,1)|U+ω2n(i,1)|U)
]

E
[
I(i ∈ s, V(i,1) ∈ DN)ri

]
N

+ o(1).

Hence
H(ω1, ω2) = µ−1E

[
riAB

N−1
∣∣i ∈ s, V(i,1) ∈ DN

]
+ o(1),

where

A = E

[
eω1I(ri=2)L(i,1)(i,2)

∣∣∣∣∣i ∈ s, V(i,1), ri

]
,

B = E

[
exp

(
ω2I(i′ ∈ s)

ri′∑
j′=1

L(i,1)(i′,j′)

)∣∣∣∣∣i ∈ s, V(i,1), ri

]
, i′ 6= i

= E

[
exp

(
ω2I(i′ ∈ s)

ri′∑
j′=1

L(i,1)(i′,j′)

)∣∣∣∣∣i ∈ s, V(i,1)

]

Hence
H(ω1, ω2) = µ−1E

[
E
[
riA

∣∣i ∈ s, V(i,1)

]
BN−1

∣∣i ∈ s, V(i,1) ∈ DN
]

+ o(1).

A = 1 + E
[
I(ri = 2)L(i,1)(i,2)

∣∣ i ∈ s, V(i,1), ri
]

(eω1 − 1) ,

E
[
riA

∣∣i ∈ s, V(i,1)

]
= E

[
ri| i ∈ s, V(i,1)

]
+ E

[
I(ri = 2)riL(i,1)(i,2)

∣∣ i ∈ s, V(i,1), ri
]

(eω1 − 1)

= µN(V(i,1))
(
1 + pN(V(i,1)) (eω1 − 1)

)
,

As for B, we have

BN−1 =

(
1 +

τ

N − 1

2∑
k=1

(N − 1)λkN(V(i,1))
(
ekω2 − 1

))N−1

= exp

(
τ

2∑
k=1

(N − 1)λkN(V(i,1))
(
ekω2 − 1

))
+O(1/N).

Hence

H(ω1, ω2) = E

[ (
1 + pN(V(i,1)) (eω1 − 1)

)
exp

(
τ

2∑
k=1

(N − 1)λkN(V(i,1))
(
ekω2 − 1

))
×

(
µ−1µN(V(i,1))

) ∣∣∣∣∣i ∈ s, V(i,1) ∈ DN

]
+ o(1).

The proof is completed by rewriting the right-hand side of the above equation based on Eq. 5 and by
identifying the component distributions of the mixture based on Eq. 7.
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