
SSC Annual Meeting, May 2021

Proceedings of the Survey Methods Section

ITEM IMPUTATION WITH A NONPROBABILITY SAMPLE

Abel Dasylva1

ABSTRACT

This study considers the problem of estimating a population total from two samples, including a
probability sample and a larger nonprobability sample, where the variable of interest is present but
missing at random in both samples. To this end, it evaluates various strategies for imputing the missing
responses in the probability sample from the observed responses and covariates in both samples. These
strategies include semiparametric solutions using a known conditional mean response function and
Lasso regression. They also include nonparametric methods such as nearest neighbor and regression
trees. These different solutions are evaluated in simulations and in an empirical study. They are also
compared to the imputation of the missing responses within the probability sample.

KEY WORDS: data integration, missing data

RÉSUMÉ

Cette étude considère le problème de l’estimation d’un total de population à partir de deux échantillons,
incluant un échantillon probabiliste et un plus grand échantillon nonprobabiliste, où la variable
d’intérêt est présente mais manquante au hasard dans les deux échantillons. À cette fin, elle évalue
diverses stratégies pour imputer les réponses manquantes dans l’échantillon probabiliste à partir des
réponses et des variables explicatives des deux échantillons. Ces stratégies incluent des solutions
paramétriques basées sur une fonction connue donnant la moyenne conditionnelle de la réponse et
la régression Lasso. Elles incluent aussi des méthodes nonparamétriques telles que le plus proche
voisin et les arbres de régression. Ces différentes solutions sont évaluées par des simulations et une
étude empirique. Elles sont aussi comparées à l’imputation des réponses à l’intérieur de l’échantillon
probabiliste.

MOTS CLÉS : intégration de données, données manquantes

1 INTRODUCTION

Statistics Canada has undertaken many activities to collect data on the impact of the COVID 19 pandemic,
including the third iteration of the Canadian Perspective Survey Series (CPSS in short), a probability web
panel, from June 15 to June 21, 2020. In the same period, the agency also collected data through a crowd-
sourced sample, using some of the CPSS questions, resulting in a much larger sample of respondents and
virtually no missing responses. Given the shared content and the sizes of the two samples, an interesting
question is how to use the crowd-sourced data to mitigate the nonresponse in the web panel, ideally with
minimal changes to the existing methodology.

This example is a specific instance of the general problem where a probability sample and a much larger
nonprobability sample are available, both containing some auxiliary variables and responses, which are
possibly missing in the probability sample. The general question is how to best combine the information
from the two samples to estimate the finite population total or the related mean. Potential options include
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imputing each missing item in the probability sample with the help of the nonprobability sample and
re-weighting the nonprobability sample. In what follows, our focus is on the first option, i.e. imputing the
missing items. A special case occurs when all the responses are missing in the probability sample. For
this situation, Chen, Li & Wu (2020) have described a re-weighting solution, while Rivers (2007), Kim
et al. (2020), Chen, Yang & Kim (2020) and Yang et al. (2021) have developed mass imputation methods,
including semiparametric and nonparametric mean imputation, fractional imputation and nearest-neighbor
imputation. This paper explores possible extensions of these imputation strategies, when the probability
sample contains some responses, to shed some light on the following basic questions. When is it beneficial
to use the nonprobability sample to impute the missing values in the probability sample? In such cases,
what is the best way to combine the information from the two samples? To gain some insight, this work
considers categorical variables, a single response, and the imputation of each missing item by a single draw
from a Bernoulli distribution according to the conditional mean response, where the latter is estimated
semi-parametrically or non-parametrically. The proposed estimators are also shown to be consistent and
asymptotically normal under general conditions.

The remaining sections are organized as follows. Section 2 describes the notations and assumptions. It is
followed by the theory (Section 3), the simulations (Section 4), the empirical study (Section 5) and the
conclusion (Section 6).

2 NOTATIONS AND ASSUMPTIONS

Let UN denote the finite population that is comprised of N units, where unit k is associated with the
binary response yk and the fixed categorical covariates xk in some finite set X with cardinal |X |. Let
Y =

∑
k∈UN

yk and Y = Y/N denote the finite population total and the related mean, respectively. Our

goal is estimating the finite population mean Y = Y/N that is equal to the finite population proportion
because the response is binary. The two samples include the size-nP probability sample sP and the
size-nNP nonprobability sample sNP . For simplicity, suppose that all the responses are observed in the
nonprobability sample, without any measurement error. For sample sP and unit k, let µk, πk, rk denote
the mean response, the first order inclusion probability and response indicator, respectively. Also define
ak = I(k ∈ sP ) and δk = I(k ∈ sNP ).

The assumptions include independent samples, inclusion at random in each sample, missing at random
responses in sP and no measurement error in the nonprobability sample, where the first assumption
means that [ak]k∈UN

and [δk]k∈UN
are independent, while the second assumption means that [yk]k∈UN

and
[(ak, δk)]k∈UN

are also independent. It is also important to note that the two samples are assumed to come
from the same finite population; a reasonable assumption when considering the CPSS and crowd-sourced
samples in a given period. When no response is missing, the population mean may be estimated from

the probability sample with the design weights, i.e. by Ŷ =
(∑

k∈sP π
−1
k

)−1∑
k∈sP π

−1
k yk. With missing

responses, one may instead use the estimator Ŷ
(I)

=
(∑

k∈sP π
−1
k

)−1∑
k∈sP π

−1
k (rkyk + (1− rk)ŷk), where

ŷk is a function of the observed responses in the probability sample or both samples.

3 THEORY

In official statistics, single item imputation is the preferred option for imputing items, including deter-
ministic procedures and random procedures (Chen & Haziza 2019). In this work, such a procedure is
considered, where ŷk ∼ Bernoulli(µ̂k) and µ̂k is estimated from the observed responses in the probability
sample or both samples.

Semiparametric setup: In this setting, the estimation of µk is based on the logistic model µk = µ (β;xk) =

ex
>
i β
(

1 + ex
>
i β
)−1

. Then µ̂k = µ
(
β̂;xk

)
, where β̂ may be based on the solution of the following estimating
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equation, ∑
k∈UN

(akrk + zδk)xk

(
yk − µ

(
β̂;xk

))
= 0,

where z = 0 if only using the responses from the probability sample and z = 1 if using the responses from
both samples. When estimating β, it is possible to ignore the sample inclusion probabilities and to pool
the responses from both samples, because the units are assumed to be included in the samples at random
and the responses are assumed to be missing at random in the probability sample. In the appendix, it is
shown that the resulting estimator of the finite population mean is consistent with an asymptotic normal
distribution, under general conditions.

Nonparametric setup: For categorical covariates, one may use a random hot-deck solution by partitioning
the respondents into classes where the mean response is as homogeneous as possible. Then ŷk is ob-
tained by uniformly drawing a donor from the same class. This is equivalent to drawing ŷk according to
Bernoulli (µ̂k), where µ̂k is the proportion of donors having y = 1, within the corresponding class. As in
the semiparametric case, µ̂k may be based on the responses from the probability sample alone, or from
both samples. When imputing the missing responses one must balance the additional variance with the
potential bias. Indeed, the imputation of a missing response is a source of variance, which decreases with
the size of the related imputation class. It also generates some bias when the missing response is imputed
with a donor having a differing mean response. When building the imputation classes, one may only use
the observed covariates among the respondents or also use their responses.

An example of the former strategy is to place two respondents in the same class if they have the same
covariates, which is essentially equivalent to the nearest-neighbor imputation when the samples are suffi-
ciently large compared to |X |. An example of the latter strategy (i.e. also using the observed responses) is
to build the imputation classes with a regression tree based on recursive partitioning. In general, using the
observed responses provides a more flexible way of optimizing the imputation bias-variance trade-off, i.e.
one may hope for fewer imputation classes (hence a smaller imputation variance) while keeping the bias
small. Recursive partitioning is an attractive solution for building the imputation classes. In the appendix,
it is argued that recursive partitioning produces homogeneous classes with a high probability, when the two
samples become arbitrarily large while |X | is fixed. Then the resulting estimator is essentially equivalent
to the semiparametric estimator under the saturated model, which is consistent and asymptotically normal
under the general conditions given in the appendix. Recursive partitioning presents an advantage (over
nearest-neighbor whenN is large) if it builds no more than |X |−1 homogeneous imputation classes, and ide-
ally the smallest number of such classes. Yet this may not be the case in some pathological situations, such
as the following simple example. Consider two binary covariates, where X = {(0, 0), (0, 1), (1, 0), (1, 1)},
E [y|x = (0, 0)] = E [y|x = (1, 1)] = a and E [y|x = (0, 1)] = E [y|x = (1, 0)] = b 6= a. In this case, it is
easily seen that the only trees producing homogeneous classes are the two full trees, which produce four
classes, i.e. the maximum number of imputation classes.

Variance estimation: To estimate the variance, a re-sampling procedure is proposed, which draws its
inspiration from previous work by Shao & Sitter (1996) and Kim et al. (2020). It is a three-step procedure,
where the two samples are drawn with replacement independently in the first step. In the second step,
these samples are used to impute the missing responses. Finally, the mean is estimated with the imputed
responses. Although the performance of this procedure is studied in the simulations, it must be noted
that, in the semiparametric case, the consistency of the resulting variance estimator does not follow from
the consistency proof by Kim et al. (2020), because therein β̂ is only based on the nonprobability sample
instead of using both samples as proposed here. However the extension of this proof is deferred to future
work.
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4 SIMULATIONS

The simulations are design-based with a single finite population with N = 10, 000 units and two covariates.
Three scenarios are considered where four estimators are compared based on the logistic model, the lasso
approach, recursive partitioning and nearest neighbor. The first scenario is ideal, where x1 and x2 are
independent Bernoulli(1/2) variables and the response is such that logit (E [y |x ]) = β0 + β1x1 + β2x2

with β0 = 0, β1 = 1 and β2 = −1. Both samples are independent simple random samples without
replacement with sizes nP = 100 and nNP = 1, 000, and the responses are missing completely at random
with probability 1/2 in the probability sample. The other scenarios are mild deviations from this ideal
situation. In the second scenario, the nonprobability sample is drawn in two phases, where the first phase
is based on a simple random sample of 1,000 units. In the second phase, a unit with the response y is kept
in the sample with the probability e−τy with τ = 1/10. Thus the inclusion mechanism is not ignorable.
In the third scenario, the response probability is eτy/ (1 + eτy), where τ = 1/10, i.e. the responses are not
missing at random in the probability sample.

To evaluate the performance of the proposed variance estimation procedure, the bootstrap variance is
computed and compared to the actual variance in the first scenario. It is based on 100 bootstrap samples
and it is only computed for the estimators based on the logistic model, recursive partitioning and nearest
neighbor. The bootstrap variance is not computed for the lasso because the procedure is computer intensive.
All the estimates are computed in R. For the logistic model, the estimates are obtained by calling the
function glm() (Marschner 2011). For the lasso and recursive partitioning, the estimates are computed
with the packages glmnnet (Friedman et al. 2010) and rpart (Therneau & Atkinson 2019), respectively.
For the nearest neighbor estimator, the imputed response is drawn from a Bernoulli distribution where
the probability corresponds to the proportion of respondents (in the probability sample or both samples)
having y = 1 and the same values for the covariates.

The results appear in Tables 1-4. In the first scenario, the results show that using both samples reduces
the bias but slightly increases the variance. This is especially true with the nearest neighbor estimator
where the bias is large when only using the probability sample. The MSE increases when going from the
logit model, to the lasso, to recursive partitioning and then to the nearest neighbor method, regardless
of whether the nonprobability sample is used. Table 2 shows the relative bias of the bootstrap variance,
where it can be seen that the bias is non-negligible even if the variance is estimated with the correct order
of magnitude (the relative bias is no greater than 30%). Overall the first scenario results demonstrate the
advantage of using the nonprobability sample when all the assumptions are met. For the second scenario,
Table 3 shows that the bias is increased, when using the nonprobability sample, without surprise since
the units are not included at random in this sample. However, the variance is decreased when using the
nonprobability, except for the logit model. Overall, the MSE is increased except for the nearest neighbor
method. For the third scenario, Table 4 shows that using the nonprobability sample tends to reduce
the bias and the variance, except for the slightly increased lasso bias and the slightly increased recursive
partitioning variance. Overall these results confirm the advantage of using the nonprobability sample when
all the assumptions are satisfied.

5 EMPIRICAL STUDY

In the empirical study, the probability sample is based on the third iteration of the Canadian Perspectives
Surveys Series (Statistics Canada 2020); a probability web-panel that ran from June 15 to June 21, 2020.
The nonprobability sample is based on a voluntary web survey that ran in the same period. Both surveys
contain questions about the willingness to get vaccinated as well as the age, education level, immigration
status and whether one has children. The willingness to get vaccinated is based on the question “When a
COVID-19 vaccine becomes available, how likely is it that you will choose to get it?”, with the answer being
one of “Very likely”, “Somewhat likely”, “Somewhat unlikely” and “Very unlikely”, when non-missing. For
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Table 1: Performance of the different estimators in the first scenario.

Estimator Both samples Relative bias (%) Variance (×10−5) MSE (×10−5)
Logit no 0.41 0.90 1.30

yes 0.37 1.06 1.40
Lasso no 0.39 1.16 1.53

yes 0.30 1.19 1.41
Recursive partitioning no 0.46 1.08 1.60

yes 0.39 1.40 1.78
Nearest neighbor no -10.09 0.85 247.15

yes -1.15 0.89 4.07

Table 2: Performance of the bootstrap variance in the first scenario.

Estimator Both samples Relative bias of the estimated variance (%)
Logit no 21.20

yes 7.56
Recursive partitioning no -0.74

yes -20.78
Nearest neighbor no 19.11

yes 26.19

Table 3: Performance of the different estimators in the second scenario.

Estimator Both samples Relative bias (%) Variance (×10−5) MSE (×10−5)
Logit no -0.29 1.32 1.53

yes -0.73 1.60 2.91
Lasso no -0.44 1.18 1.67

yes -0.65 1.00 2.06
Recursive partitioning no -0.23 1.23 1.36

yes -0.70 1.16 2.36
Nearest neighbor no -0.23 118.66 118.79

yes -2.28 13.35 26.18

Table 4: Performance of the different estimators in the third scenario.

Estimator Both samples Relative bias (%) Variance (×10−5) MSE (×10−5)
Logit no 1.93 1.31 10.59

yes 1.73 1.04 8.57
Lasso no 1.87 1.32 10.07

yes 1.88 1.25 10.11
Recursive partitioning no 1.97 1.10 10.76

yes 1.77 1.13 8.95
Nearest neighbor no 2.34 125.82 139.57

yes 0.95 9.61 11.86

5



the study, the willingness to get vaccinated is treated as the response. It is coded as a 0-1 variable, which
is set to 1 if the answer is “Very likely”. The explanatory variables include the age, education level,
immigration status and whether one has children, which are all coded as 0-1 variables in this study. The
age is set to 1 when the person’s age is greater than or equal to 65. The education level is set to 1 if the
individual has at least a bachelor’s degree. The immigration status is set to 1 if the respondent was born
in Canada. Finally whether one has children is coded as a 1 if that is indeed the case.

In the probability sample, the response is set to missing according to an independent Bernoulli(1/2). As
for the nonprobability sample, it is limited to the respondents where all the variables are non-missing.
Both samples are treated as simple random samples. This means that the design weights of the probability
sample are ignored, which implies a non-informative sampling design. The relative error is measured with
respect to the mean of the probability sample with all the responses. The variance is estimated with the
previously described bootstrap procedure.

In Table 5, it can be seen that both the relative error and the variance tend to increase when using the
nonprobability sample, for each estimator, unlike what one would expect if all the assumptions were met.
This suggests a possible departure from some of these assumptions, which must be checked, such as the
inclusion at random of a unit in each sample.

Table 5: Results of the empirical study.

Estimator Both samples Relative error (%) Variance (×10−5)
Logit no -1.11 1.45

yes -6.00 2.05
Lasso no -0.89 1.46

yes -5.95 2.30
Recursive partitioning no -1.44 1.84

yes -6.39 1.74
Nearest neighbors no -1.68 1.19

yes -5.95 2.14

6 CONCLUSION

In conclusion, it is beneficial to use the nonprobability sample under the four stated assumptions, including
non-informative samples and missing at random responses in the probability sample. However, these
assumptions are critical and must be checked. The issue of variance estimation must also be revisited as
the proposed procedure may estimate the variance with a non-negligible bias, even when all the assumptions
are met.

7 DISCLAIMER

The content of this paper represents the authors’ opinions and not necessarily those of Statistics Canada.
It describes theoretical methods that may not reflect those currently implemented by the Agency.
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A PROOFS

A.1 Consistency of recursive partitioning

The consistency of recursive partitioning has been discussed extensively in previous work including Breiman
et al. (1984) and references therein, when dealing with continuous covariates. However in this work, the
interest lies with categorical covariates when |X | is fixed regardless of N . In such cases, it seems intuitive
that recursive partitioning will produce homogeneous classes with a high probability when each sample
becomes arbitrarily large. Indeed, with this procedure, the tree is built in two phases including a splitting
phase followed by a pruning phase. In the splitting phase, the data points are partitioned recursively into
disjoint regions, with a greedy procedure to minimize a cost function based on a sum of squares. At each
step, a region is further partitioned into subregions according to the variable yielding the largest decrease
in the sum of squares, until a stopping criterion is met, e.g. a minimum number of observations in a region
or a maximum number of regions. The pruning phase selects a subtree with a cost not exceeding that of
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the tree. To avoid over-fitting different data points are used for the two phases, through cross-validation.
However, in the asymptotic regime where |X | is bounded and the two samples become arbitrarily large,
this cross-validation is likely to have a negligible impact. Thus it is ignored in the following heuristic
discussion.

Denote by Π the set of all partitions of X and by P =
{
RP1, . . . ,RP|P|

}
such a partition, where

RP1,...,RP|P| are nonempty, disjoints and such that X =
⋃|P|
t=1RPt. Let Π∗ denote the subset of Π,

which comprises of all the partitions with constituent subsets that are level sets of the mean response. In
other words, P ∈ Π∗ if and only if the mean response is a constant over RPt for each t = 1, . . . , |P|. For
t = 1, . . . , |P|, let nPt =

∑
k∈UN

I (xk ∈ RPt) (akrk + zδk) and define the cost function

C(P) =

|P|∑
t=1

∑
k∈UN

I (xk ∈ RPt) (akrk + zδk)

(
yk −

1

nPt

∑
k′∈UN

I (xk′ ∈ RPt) (ak′rk′ + zδk′) yk′

)2

.

Suppose that the following limits hold when N →∞
1∑|P|

t=1 nPt

∑
k∈UN

(akrk + zδk)µk (1− µk)
p−→ τ 2

and

1∑|P|
t=1 nPt

|P|∑
t=1

∑
k∈UN

I (xk ∈ RPt) (akrk + zδk)

(
µk −

1

nPt

∑
k′∈UN

I (xk′ ∈ RPt) (ak′rk′ + zδk′)µk′

)2

p−→ v2
P ,

for all P ∈ Π, where v2
P > 0 if and only if P /∈ Π∗. Then

C(P) =

 |P|∑
t=1

nPt

(τ 2 + v2
P + op(1)

)
.

When P ∈ Π∗, v2
P = 0 so that C(P) =

(∑|P|
t=1 nPt

)
(τ 2 + op(1)). When P /∈ Π∗, v2

P ≥ minP ′ /∈Π∗ v
2
P ′ > 0 so

that C(P) > maxP ′∈Π∗ C(P ′) and minP∈Π−Π∗ C(P) > maxP∈Π∗ C(P) with a high probability.

Now suppose that the tree is built through recursive partitioning and that the stopping criterion is based
on having no more than |X | terminal nodes in the growth phase. Then with a high probability as N →∞,
the growth phase is to produce a maximal tree, where the leaves are the singleton subsets of X , i.e. the
partition P0 = [{x}]x∈X ∈ Π∗. The pruning phase is to produce a subtree P ′ having a cost no greater than
C(P0). Then with a high probability,

min
P∈Π−Π∗

C(P) > max
P∈Π∗

C(P) ≥ C(P0) ≥ C(P ′),

which implies that P ′ ∈ Π∗, i.e. P ′ produces homogeneous imputation classes with a high probability.

A.2 Large sample properties

This section proves the consistency and asymptotic normality of Ŷ
(I)

, in the semiparametric case, under
general conditions that are inspired by Fuller (2009).

Suppose that E[y|x] = µ(β0;x), where µ(.;x) is sufficiently differentiable for each x-value. Let µk =

µ (β0;xk), µN = N−1
∑

k∈UN
µk and suppose that β̂ is the solution of the following estimating equation

for some sufficiently differentiable (with respect to its first argument) score function g(.; ., .).∑
k∈UN

(akrk + δk) g
(
β̂;xk, yk

)
= 0.
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Let µ̂k = µ
(
β̂;xk

)
and n = |sP | for notational convenience. Also define T̂ =

∑
k∈UN

π−1
k akyk, T̂

(I) =∑
k∈UN

π−1
k ak (rkyk + (1− rk)ŷk) and N̂ =

∑
k∈UN

π−1
k ak.

Suppose that max1≤k≤N π
−1
k (n/N) = O(1) and
√
n
(
N−1

∑
k∈UN

π−1
k akµk − µ

)
√
n
(
N̂/N − 1

)
 d−→ N(0,Σ).

Further suppose that n = op(sNP ) such that β̂−β0 = op(n
−1/2) and max1≤k≤N |µ̂k − µk| = op(n

−1/2). Also
suppose that

1

n

∑
k∈UN

(
nπ−1

k

N

)2

ak(1− rk)µk (1− µk)
p−→ σ2.

Then, it can be shown that Ŷ
(I)

is consistent with an asymptotic normal distribution. Indeed for ω =
[ω1 ω2]> ∈ IR2, let

∆N = ω1

√
n

(
T̂ (I)

N
− µN

)
+ ω2

√
n

(
N̂

N
− 1

)

= ω1

√
n

(
T̂ Iy
N
− 1

N

∑
k∈UN

π−1
k ak (rkµk + (1− rk) µ̂k)

)
︸ ︷︷ ︸

=∆N1

+
ω1

√
n

N

∑
k∈UN

π−1
k ak (1− rk) (µ̂k − µk)︸ ︷︷ ︸

=op(1)

+

ω1

√
n

(
1

N

∑
k∈UN

π−1
k akµk − µ

)
+ ω2

√
n

(
N̂

N
− 1

)
︸ ︷︷ ︸

=∆N2

.

Hence

∆N = ∆N1 + ω>


√
n
(
N−1

∑
k∈UN

π−1
k akµk − µ

)
√
n
(
N̂/N − 1

)


︸ ︷︷ ︸
=WN

+op(1),
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Next observe that

E

e∆N1

∣∣∣∣∣∣∣∣



ak
δk
yk
rk



k∈UN

 = E

exp

(
ω1√
n

∑
k∈UN

(
nπ−1

k

N

)
ak(1− rk) (ŷk − µ̂k)

)∣∣∣∣∣∣∣∣



ak
δk
yk
rk



k∈UN


=

∏
k∈UN

[
(1− µ̂k) e−ω1(nπ−1

k /N)(1−rk)µ̂k/
√
n +

µ̂ke
ω1(nπ−1

k /N)(1−rk)(1−µ̂k)/
√
n
]ak

=
∏
k∈UN

[
1− ω2

1

2n

(
nπ−1

k

N

)2

(1− rk)µ̂k (1− µ̂k) +Op

(
n−3/2

)]ak

= exp

(
−ω

2
1

2

(
1

n

∑
k∈UN

(
nπ−1

k

N

)2

ak(1− rk)µ̂k (1− µ̂k)

)
+Op

(
n−1/2

))

= exp

(
− ω2

1

2

(
1

n

∑
k∈UN

(
nπ−1

k

N

)2

ak(1− rk)µk (1− µk)

)
+ op(n

−1/2) +

Op

(
n−1/2

))
= e−σ

2ω2
1/2+op(1).

Therefore

E
[
e∆N

]
= E

E
e∆N1

∣∣∣∣∣∣∣∣



ak
δk
yk
rk



k∈UN

 eω>WN+op(1)


= E

[
e−σ

2ω2
1/2+ω>WN+op(1)

]
= e−σ

2ω2
1/2E

[
eω
>WN

]
+ o(1)

= e−σ
2ω2

1/2
(
e−ω

>Σω/2 + o(1)
)

+ o(1)

and E
[
e∆N

]
→ e−(σ2ω2

1+ω>Σω)/2. This means that
√
n
(
T̂ (I)/N − µN

)
and
√
n
(
N̂/N − 1

)
have a limiting

joint distribution that is normal. Then Slutsky’s theorem implies that
√
n

(
Ŷ

(I)

− µN
)

has an asymptotic

normal distribution with zero mean.
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