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ABSTRACT 
  
Mary Thompson’s 2004 Gold Medal address included a discussion of causation and causality in observational studies.  One of 

Mary Thompson’s passions has been on making analytic inferences from surveys with a complex design.  Since population-based 

surveys are observational studies, it seems natural to ask what the impact of the survey design might be for making causal 

inferences.  First, we give a brief review of the literature on causal inference from observational studies.  Using Cox and 

Wermuth’s (2004) delineation of various levels of causality, we investigate which assumptions are suitable for the ignorability of 

the survey design. 
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RÉSUMÉ 
 
En 2004, l’allocution de Mary Thompson, la récipiendaire de la médaille d’or incluait une discussion sur la causalité pour des 

études observationnelles.  L’une des passions de Mary Thompson fut de mener des analyses inférentielles d’enquêtes à plan de 

sondage complexe.  Puisque les enquêtes sur la population sont des études observationnelles, il semble naturel de s’interroger sur 

l’impact du plan de sondage dans les inférences causales.  Nous débuterons par une courte revue de littérature de l’inférence 

causale d’études par observation.  En utilisant la délimitation de Cox et Wermuth (2004) pour différents niveaux de causalité, 

nous étudierons les hypothèses valables permettant d’ignorer le plan de sondage. 

 

MOTS CLÉS : Niveaux de causalité; Hypothèse de la stabilité de valeur de traitement de l'unité; Ignorabilité du plan de sondage. 

 

 

 

“Any claim from an observational study is most likely to be wrong.” - (Young and Karr – 2011) 
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1. BACKGROUND 

 

Mary Thompson's illustrious career spans several important topics, including survey methods, estimation for partially 

observed Markov or semi-Markov models, and inferential and design issues for complex longitudinal surveys.  Her 

Statistical Society of Canada Gold Medal address in 2004 was on "Understanding associations: Implications for the design 

and analysis of longitudinal surveys".  In choosing a topic for this paper in honour of Mary Thompson's retirement, I 

decided to study the issue of causal inference for data from a complex survey, since this seems to overlap two of the topics 

about which Mary Thompson is passionate.  

 

We introduce the topic with a short review of the distinction between analytic and descriptive inferences made from 

complex survey data.  We note some peculiarities of causal inferences made from observational data, and discuss the 

Fundamental Problem of Causal Inference described in Holland (1986). Cox and Wermuth (2004) provide a 

comprehensive framework for describing various levels of causality.  We discuss the impact of survey design on causal 

inference within this framework. 
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1.1 Inference from Population-based Surveys 

 

A distinguishing feature of population-based surveys is that the target population is finite.  The main objective is to 

estimate finite population quantities, such as means, totals, ratios, etc.  In some instances the sample is also used to 

estimate analytic quantities, such as the parameters of a model.  In this case, it is convenient to assume that the finite 

population from which the sample was drawn is actually the result of a random realization from a statistical model.  

However for making causal inferences, since the sample was not obtained via a controlled experiment, the causal effects 

can be assessed only from the point of view of having observational data, rather than experimental data.  

 

For estimating model-parameters based on data obtained from a survey with a complex design, it is well-known that a 

design-based approach can lead to valid inferences, for large sample sizes, provided that the first moments of the model 

are correctly specified, and the sampling fraction is negligible - see Binder and Roberts (2003).  Important exceptions do 

exist, such as estimating the variance components of random effects in a random or fixed effects model.  On the other 

hand, if the higher order moments of the model are not correctly specified, or if there are missing variables in the assumed 

model, model-based inferences may lead to misleading conclusions. 

 

1.2 Problems with Causal Inferences 

 

Pearl (2009), for example, distinguishes associational assumptions from causal assumptions.  Associational assumptions 

are testable in principle, but causal assumptions cannot be verified (even in principle) unless one resorts to experimental 

control.  Some authors – for example, Rogosa (1997) – would go so far as to say that causal models do not support 

scientific conclusions.  However, in spite of this dilemma, Thompson (2004) pointed out that "careful interpretation of 

associations can lead to understanding glimpses of causality".  Freedman (1999) gives some historical examples where 

associations have lead to correct and incorrect causality conclusions.  He mentions, however, that for some situations, 

there may be good reasons why controlled experiments are not possible and observational studies are the only choice.  

These may include ethical considerations. 

 

The Fundamental Problem of Causal Inference was described by Holland (1986).  This problem is the fact that it is 

impossible to observe the value of the outcome of interest for all the treatment values.   

 

Here is a simple example of this quandary, given by Rubin (2005).  Suppose that in very large randomized experiments 

the concomitant variable X is the number of plants established in each plot, the primary outcome R is the yield in each 

plot, the treatment, C, is a new fertilizer (C=1), and the control is the standard fertilizer (C=0). In each experiment, half of 

the units are randomly assigned to the active treatment and half of the units are assigned to the control treatment.  For each 

of four plots, we observe Xobs and Robs.  In Table 1, we give the observed data. 

 

Table 1 – Agricultural Fertilizer Trial - Observed Data  

 
Fraction  Observed Data 

of Sample  C Xobs Robs  

1/ 4  0 2 10 

1/ 4  1 3 10 

1/ 4  0 3 12 

1/ 4  1 4 12 

 
 

What conclusion might be reached?  It turns out that the following linear relationship holds exactly. 

 

       (1.1) 

 

The conclusion looks obvious.  For a given number of plants established in each plot, the average effect of the active 

treatment would be to decrease the yield by 2 units.  If only real life were always so simple! 

 

However, the observed data do not tell the whole story.  We denote by X(C) and R(C) the potential outcomes for C=0 and 

C=1.  In Table 2 we give all the outcomes. 

.226 obsobsobs XCR 
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Table 2 – Agricultural Fertilizer Trial - Potential Outcomes and Observed Data 

 

 

Fraction Potential Outcomes  Observed Data 

of Sample X(1) X(0) R(1) R(0)  C Xobs Robs  

1/ 4 3 2 10 10  0 2 10 

1/ 4 3 2 10 10  1 3 10 

1/ 4 4 3 12 12  0 3 12 

1/ 4 4 3 12 12  1 4 12 

 

In Table 2, we see that for R(0) and R(1), the yields under the control and the treatment, there is no treatment effect in any 

of the plots!  This directly contradicts to the so-called "obvious" conclusion reached from the observed data in Table 1!  

The Fundamental Problem of Causal Inference has reared its ugly head. 

 

1.3 Common Assumptions for the Validity of Causal Inferences 

 

In order to make causal inferences in light of the Fundamental Problem of Causal Inference, it is necessary to make some 

assumptions, which, in general, are unverifiable. 

 

1.3.1 Propensity score matching 

Propensity score matching is used to try to create a scenario that can be analyzed using methods similar to methods used 

for designed experiments, by correcting for the imbalance on the covariates.  It is assumed that, conditional on the 

covariates, the treatment assignment is independent of the outcome of interest.  This is sometimes referred to as "no 

unmeasured confounding".   

 

A common procedure to implement propensity score matching is, first, to run a logistic regression with the response 

variable as the dependent variable and appropriate conditioning variables as explanatory variables.  The propensity score 

is the predicted probability that the response variable is 1, for each unit.  Each participant is matched to one or more 

nonparticipants on propensity score, using one of a variety of matching techniques, such as nearest neighbour matching.  

The analysis is then performed using methods appropriate for non-independent matched samples.  Some issues about 

weighting when using propensity score methods are given in Austin (2009). 

 

1.3.2 Rubin Causal Model 

Central to Rubin's Causal Model is the Stable Unit Treatment Value Assumption (SUTVA).  Here, it is assumed that one 

unit's outcomes are unaffected by another unit's treatment assignment.  The conditional probabilities of being assigned to 

each treatment level are not chosen by the investigators but can be consistently estimated from the data.  The treatment 

levels are not assigned by the investigator but correspond to well-defined interventions. 

 

In my opinion, one needs to consider the validity of this very carefully.  For example, would the introduction of a 

mandatory screening policy for a disease in one province affect the likelihood of being screened for that disease in another 

province?  If so, is it still possible to estimate the effect of implementing the mandatory screening policy? 

 

2. IMPACT OF THE SURVEY DESIGN 

 

2.1 Some Basic Sampling Theory Results 

 

There is very little in the literature where the impact of the survey design on making causal inferences is discussed.  

Godambe and Thompson (1997) do look at estimation problems for this case.  Wang, Scharfstein, Tan, and MacKenzie 

(2009) consider estimation of the causal effect of a treatment on an outcome from observational data collected in two 

phases. 
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To discuss this more formally, we start with a simple case of a Poisson model with loglinear parameters.  The population 

values are R

r
N  ( 1,0r ), with means R

r
 , where 

 
R

r

R

r
 log , and 0

10
 RR  .   (2.1) 

 

We  denote by D , a 0-1 design variable, and we assume that 
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The parameters of interest here correspond to the treatment means; namely, R

r
  ( 1,0r ).  Note that this model is not a 

causal model, but it will be useful in the causal modeling context in Section 2.2.1. 
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The maximum likelihood estimators for R

r
  are given by 
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We note that the factors D

d

D

d
nN  in (2.4) are the usual sampling weights. 

If, however, it can be assumed that 0RD

rd
 (independence of the design variable and the variable of interest), then the              

maximum likelihood estimators for R

r
  are given by  

 

R

r

R

r
n

n

N
̂ ,      (2.5) 

 

so that the design information can be ignored. 

 

This is a simple case of a more general result that when the sampling design is informative, an approach that ignores the 

design variables can lead to inappropriate conclusions.  In general, the sample design is informative when the distribution 

of the observed outcomes is different from the distribution for outcomes generated from the model with no additional 

effect of the design variables (other than those already in the model).  If the sampling design is not informative, then the 

sampling design can be ignored.  For more complex situations, see Binder and Roberts (2009). 

 

2.2 Cox and Wermuth's Framework for Causality 

 

Cox and Wermuth (2004) provide a comprehensive framework for inferring causality.  In this framework, there are four 

main types of variables: 

 Primary responses (R), 

 Intermediate variables (I), 

 Potential causes (C), and  

 Background variables (B). 

 

Ignoring for the moment the intermediate variables, notionally we can regard the variables as ordered B, then C, then R, so 

that it is natural to represent the distribution for the random variable as 

 

BBCCBRRCB
ffff

||
 .     (2.6) 
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When the intervening (causal) variable C has no backward effect on B, Lauritzen (2000) uses the notation "||" to replace 

the conditioning sign,  

 

dbfff
BCBRCR  |||

.     (2.7) 

 

This is Pearl’s (2000) definition of a causal effect.  We see that the focus is on how the response variable R changes as the 

causal variable C changes, having marginalized over B.  

 

Cox and Wermuth (2004) discuss what they refer to as three levels of causality (zero-level, first-level, second-level).  For 

zero-level causality, there is a statistical association with clearly established ordering from cause to response, which 

cannot be removed by conditioning on allowable alternative features.  An allowable feature must have the attribute of not 

being affected by the causal variable.  For stochastic outcomes on the response variable, this is rare.   

 

We consider the loglinear model given by  

 
RC

rc

C

c

R

r

RC

rc
 log .    (2.8) 

 

Note that even though this model may appear symmetric in R and C, we are really assuming that conditional on C, the 

outcomes for R are independent and identically distributed, with probability depending on the value of C.  The marginal 

model for C is assumed to be a Poisson model. 

 

Zero-level causality implies that for any allowable intermediate variable I, the model that includes I must be of the form 

 
RC

rc

I

i

C

c

R

r

RCI

rci
 log .   (2.9) 

 

Because the focus is on the effect that C has on R, the parameters of interest in this model are RC

rc
 .  Now, since 

intermediate variables could include design variables, we see that ZERO-LEVEL CAUSALITY MUST HAVE AN 

IGNORABLE SAMPLING DESIGN.  If, however, the strong assumption of zero-level causality does not hold, then 

ignoring the design may have negative implications. 

 

The case of first-level causality is the one most immediately relevant in many applications.  Faced with two or more 

possible interventions in a system, the aim is to compare the outcomes that would arise under the different interventions.   

For example, if 
0

C  and 
1

C  are two treatments, only one of which can be observed, we would like to compare the outcome 

observed when 
1

C   is used to the outcome that would have been observed had 
0

C   been used, and vice versa.  This 

definition of causality is explicitly comparative.  To formalize first-level causality in a simple case, we consider a Poisson 

model with loglinear parameters.  For each individual, there are two possible outcomes, depending on the value of the 

causal variable.  We denote these by 
0

R  and 
1

R .  When 
0

C  is applied to a unit, we observe 
0

R , and when  
1

C  is applied 

to a unit, we observe 
1

R .  The model here is given by 
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r,r
++= log   .   (2.10) 

 

 

It can be shown that the two-factor interactions cannot be estimated from the available data without further assumptions.   

A common assumption made is the stable unit treatment value assumption (SUTVA), so that all two-factor interactions 

are zero.  However, other assumptions could also lead to an identifiable model.  Shaffer and Chinchilli (2002), for 

example, assume that .0
10
n   This could correspond to an assumption such as a placebo leading to a successful outcome 

implies that the treatment would lead to the same outcome. 

 

2.2.1 Impact of the Survey Design 

We now ask what can be surmised if we also consider a model that includes a survey design variable such as D used in 

Section 2.1.  First, we note that if the population values can be assumed to have been generated by model (2.10), then 
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under the assumption of no unmeasured confounding, the likelihood for the population counts is equivalent to independent 

realizations from two univariate distributions, similar to the form given by (2.1).  Since we are now in the same 

framework as the simple non-causal model described in Section (2.1), we see that if the sampling is informative, the 

design information should be incorporated in the analysis.   

 

Also Godambe and Thompson (1997) showed through an optimal estimating equation approach, that the design weights 

should be used.   

 

Godambe and Thompson (1997) suggest estimating propensities using sampling weights.  When propensity scores are 

used, they suggest using the doubly-robust weighting method.  This is supported by Wang et al. (2009) in their 

simulations for a case of a two-phase sample design. 

 

We turn now to second-level causality as described in Cox and Wermuth (2004). As already stated, to find convincing 

evidence about the generating process in general requires assembly of evidence of various kinds. Nevertheless an 

important first step towards level-two causality may often be analysis involving the intermediate variable or variables I.  

These may indicate possible pathways between potential causal variables C and the response R.  Detailed interpretation 

will have the limitations of observational studies. Even in the simpler discussion of potential causes, it may sometimes be 

dangerous to disregard I totally, for this may indicate some unexpected and in a sense unwanted consequence of the 

intervention for which some account needs to be taken.   

 

If we suppose that careful design and analysis have established a pattern of dependencies or associations or have provided 

reasonable evidence of first- or zero-level causality, then the question of explaining how these dependencies or 

associations arose is often posed.  What underlying generating process was involved, i.e. what is underlying the structure 

observed?  

 

A general concern is the notion of averaging an effect over the distribution of B. Cox and Wermuth (2004) state that while 

this is sometimes convenient, in general the marginalization is a bad idea, notably because it discourages the study of 

interactions between the causal variables and additional features included in the background variables.  Such interactions 

may be crucial for interpretation.  In this case, the appropriate distribution for causal interpretation is CBR
f

| , not 

dbfff
BCBRCBR  |||

.  

 

However, marginalizing over B really deals with the following question: Given a probability distribution over a set of 

variables (estimated from appropriate data) and given only C= c, what can be inferred about R?  When marginalizing over 

B in a complex survey, informative sampling can now play a role, especially if B is not directly observed, or is not 

included in the model.  Marginalizing over B would answer the question of what would be the impact on the mean of the 

response variable over the whole population be if the whole population had been exposed to C= c. 

 

When a second-level causality model is used to study the effect of the causal variables on the response variables, it would 

be appropriate to incorporate the design information as in the case of first-level causality, since this offers some protection 

against informative sample designs.   

 

3. CONCLUSIONS 

 

Making analytic inferences from complex survey data involves assuming a model for the finite population.  The 

Fundamental Problem of Causal Inference implies that unverifiable assumptions are needed when dealing with 

observational data.  These assumptions should not be taken lightly.  Cox and Wermuth (2004) provide a useful framework 

for discussing the impact of survey design on inference.  For most typical cases, ignoring the survey design information 

may lead to misleading conclusions.   
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