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Many practical problems in our Internet Age can benefit from ideas in statis-
tics. In this chapter, I briefly tell the story of how two statistical ideas can be
applied quite naturally to one such problem.

16.1 Introduction

The problem that I will focus on is that of making personalized recommen-
dations in e-commerce. We encounter personalized recommendations every-
where. If you buy a book or watch a movie online, e.g., from www.amazon.com

or www.netflix.com, their recommender systems will suggest a few other
books or movies that they “think” you might also like. Table 16.1 contains a
hypothetical example, created to illustrate the main ideas. It shows how four
different customers would have rated four different books on the scale of 0–100
(see Remark 16.1). In reality, at any given time, the customers will only have
revealed their preferences on a limited number of books. For example, they
may have purchased a few and explicitly rated a few others. Therefore, we will
pretend that only some of the ratings in Table 16.1 are available, while others
— in particular, those marked by “?” — are missing, and the recommender
system must predict them based on the observed entries. If the predicted rat-
ing is high, a recommendation can then be made. In what follows, we will
refer more generally to “users” and “items” rather than just “customers” and
“books.”

The two statistical ideas that I have alluded to are: regression and shrink-
age. Linear regression is one of the most widely used statistical techniques.
The idea has been around since at least the early 1800s, and some of its early
champions included such mathematical giants as Carl Friedrich Gauß. It pos-
tulates that a target variable of interest, y, is a linear function of a number of
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TABLE 16.1: Illustrative example: Four users rate four books. Moby Dick
refers to the novel Moby Dick; or, The Whale by Melville (1851). Dreams
refers to the book The Interpretation of Dreams by Freud (1913). Species
refers to the book The Origins of Species by Darwin (1859). Relativity refers
to the book Relativity by Einstein (1916). A question mark (?) indicates that
the corresponding rating is treated by various methods as if it were miss-
ing/unobserved and to be predicted. Predictions closer to these entries here
are deemed more accurate.

Moby Dick Dreams Species Relativity
Alice 90 70 ? 30 10
Bob 90 70 30 ? 10
Cathy 10 30 ? 70 90
David 10 30 70 ? 90

other variables x1, . . . , xd plus some random noise ε,

y = β0 + β1x1 + · · ·+ βdxd + ε,

and uses data to estimate the linear function — in particular, the coefficients
in front of each xj , j ∈ {1, . . . , d}. Shrinkage estimation (James and Stein,
1961) is a much newer idea, but it has been central to modern statistical
practice. For example, while a “natural” way to predict the batting averages
of baseball players in a new season is to base the predictions on each player’s
historical average (yi), a much better way (see, e.g., Efron and Morris, 1977)
is to shrink each yi toward the overall mean of all players, i.e.,

ȳ =
1

n
(y1 + · · ·+ yn).

Remark 16.1. In practice, we will not usually have ratings of such fine res-
olution. In many cases, we can only obtain rough indications of whether a
customer likes or dislikes a certain book, e.g., a binary indicator of whether
the customer has purchased it or read a few of its reviews. Explicit ratings
are possible, but they rarely go beyond a five-point scale such as “terrible,”
“bad,” “fair,” “good,” and “excellent.” However, I have chosen the finer-than-
usual scale deliberately, so that I can demonstrate more easily the differences
of various methods. On such a small example (4 customers × 4 books), the
predictions made by various methods would differ by too little if I only used
a rough scale.
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16.2 Nearest Neighbors

There are many different ways to predict the missing entries in Table 16.1;
see, for example, a recent review by Feuerverger et al. (2012) and references
therein. The nearest neighbors approach (see, e.g., Koren, 2008) is perhaps
the most intuitive. For example, to predict Alice’s rating (rA) of Freud’s The
Interpretation of Dreams, we can consider observed ratings of this book —
in this case, those given by Bob (rB = 70) and by David (rD = 30) — and
ask: whose preferences, Bob’s or David’s, do we expect to be closer to those of
Alice’s? Suppose s(A,B) and s(A,D) measure the similarities between Alice
and Bob, and between Alice and David, respectively. Then, we can predict rA
to be {

s(A,B)

s(A,B) + s(A,D)

}
× rB +

{
s(A,D)

s(A,B) + s(A,D)

}
× rD,

a weighted average of Bob’s and David’s ratings, each weighted by their re-
spective similarities to Alice. The similarity between two users can be inferred
from items that they have already rated in common. In this case, Alice and
Bob have both rated Melville’s Moby Dick and Einstein’s Relativity, and their
ratings of these items are highly similar. On the other hand, Alice and David
have both rated the same two items as well, but their ratings of these items
are much less similar. It appears, therefore, that s(A,B) > s(A,D). To give a
concrete numeric example, suppose the similarity measure s(·, ·) were specified
in such a way that s(A,B) = .75 > .25 = s(A,D). Then, our prediction of rA
would be (

.75

.75 + .25

)
× 70 +

(
.25

.75 + .25

)
× 30 = 60.

The choice of the similarity measure, s(·, ·), clearly plays a major role in this
approach, but I will not go into the mathematical details here.

16.3 Matrix Factorization

A slightly more abstract approach — the matrix factorization approach (see,
e.g., Koren et al., 2009) — became popular as a result of the highly publi-
cized Netflix Prize (www.netflixprize.com). The data in Table 16.1 form a
user-item rating matrix, R, typically with many missing entries. In general,
suppose there are n users and m items (n = m = 4 in Table 16.1). After
accounting for both user-effects and item-effects (more on this below), the
matrix factorization approach aims to factor the matrix R into the product
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of two low-rank matrices,

R ≈ PQ> =

 p>1
...
p>n


︸ ︷︷ ︸
n×K

(
q1 . . . qm

)︸ ︷︷ ︸
K×m

, (16.1)

where pu, qi are vectors in RK and K � min(n,m). The user- and item-effects
refer to the fact that some users are more difficult to please, while some items
are better liked in general than others. After removing the overall mean of
R, these effects can be estimated by the row-means and column-means of R,
and are typically removed as well prior to performing the factorization (16.1).
In other words, the matrix factorization approach aims to estimate latent
coordinates, pu, qi ∈ RK , respectively for each user (u) and for each item (i),
such that the user-item rating (rui) can be approximated — modulo user-
and item-effects — by p>u qi, a measure of how closely aligned the user- and
item-coordinates are.

If the coordinates are two-dimensional (i.e., K = 2), then this process will
literally give us a map of all users and items (Figure 16.1, I). In order to make
recommendations to a user, all we have to do is to first locate the user on
the map, and then recommend items that are close by (see Remark 16.2). For
K > 2, the idea is exactly the same, except that the map is high-dimensional.
In practice, the parameter K is determined empirically, but generally should
be chosen so that the total number of parameters being estimated (nK+mK)
is considerably smaller than the total number of observed ratings. The key,
of course, lies in our ability to create such a user-item map. This can be
accomplished by solving a regularized optimization problem, but I will, again,
omit the mathematical details.

Remark 16.2. One may notice that, in Figure 16.1 (I), Bob is much farther
away from Moby Dick than Alice is, even though they both have given it the
same rating of 90 (Table 16.1). This is because user- and item-effects have
been removed prior to matrix factorization. Based on available ratings, Bob
appears to be less critical than Alice is — in particular, Bob’s average rating
is (90+70+10)/3 ≈ 56.67, whereas Alice’s average rating is (90+30+10)/3 ≈
43.33. That’s why a book has to be much closer to Alice for her to give it a
high rating, but it doesn’t have to be as close to Bob for him to give it an
equally high rating. The same explanation applies to Cathy and David.

16.4 Matrix Completion

Lately, an even more abstract approach — the matrix completion approach
— has attracted some attention as well. The idea is to fill in the missing
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FIGURE 16.1: Illustrative example: Maps produced by different matrix fac-
torization methods, after having removed user- and item-effects. A = Alice;
B = Bob; C = Cathy; D = David. (I) A map of users and items, without
incorporating any content information. (II) A map of users and items, in-
corporating content information by the shrinkage approach. (III) A map of
users and items’ content features, incorporating content information by the
regression approach.

entries of R in such a way that the completed matrix — call it R̂ — is as low-
rank as possible. Mathematically, this amounts to solving a constrained rank
minimization problem (Candès and Recht, 2009). The rationale behind rank
minimization is similar to that behind the matrix factorization approach: we
believe that user-preferences are driven by only a few key factors; therefore,
the rank of the rating matrix cannot be very high. Thus, the two approaches —
matrix factorization and matrix completion — share a common philosophical
underpinning, but they differ in that the matrix factorization approach is
more explicit about the nature of the low-rankness. Rank minimization by
itself is an NP-hard problem, essentially meaning that there is currently no
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way to guarantee an exact solution except when the size of the problem is
very small. However, recent theoretical advances (e.g., Candès and Tao, 2005;
Candès and Recht, 2009; Recht et al., 2010) have established that, under
certain conditions, we can obtain the same solution by solving a much easier,
convex optimization problem instead, replacing rank(R̂) with ‖R̂‖∗, the so-

called “nuclear norm” of R̂ (see Remark 16.3). The mathematical details here
are very technical, and we will definitely stay away from them in this chapter.

Remark 16.3. For those with enough background to appreciate why the
so-called `1-norm has been so important for high-dimensional problems in
statistics (see, e.g., Tibshirani, 1996; Donoho, 2006), the nuclear norm of R̂ is
defined as

‖R̂‖∗ =
∑
k

|σk|1,

where σ1, σ2, . . . are the singular values of R̂. Recall that rank(R̂) =
∑
k |σk|0.

Hence, if we write v = (σ1, σ2, . . .)
> as the vector stacking all the singular

values together, then rank(R̂) and ‖R̂‖∗ are just the `0- and `1-norms of v,
respectively. Therefore, nuclear-norm minimization is to rank minimization
what the lasso (Tibshirani, 1996) is to subset selection. For additional infor-
mation about the lasso, see Chapter 5 by Rob Tibshirani.

16.5 Content-Boosted Matrix Factorization

Sometimes, we may have additional content information about the items. For
example, Table 16.2 contains some features that can be used to describe the
four books listed in Table 16.1. According to this table, Melville’s Moby Dick
shares three features in common with Freud’s The Interpretation of Dreams,
but only one with Darwin’s The Origin of Species. Clearly, such information
may explain why some users prefer certain items to others. In our illustrative
example, for instance, the ratings are highly predictable from the items’ con-
tent features — any user’s ratings of any two items are always 20 × (4 − Z)
points apart if the two items share Z content features in common (Z = 0, 1, 2,
or 3). In reality, the content features will not have such a strong bearing on
the users’ ratings, but they are still more likely than not to be at least par-
tially informative. If so, they can (and should) be exploited to enhance the
predictions of the recommender system. We have proposed two different ways
(Forbes and Zhu, 2011; Nguyen and Zhu, 2013) to incorporate such content
information into the matrix factorization approach, which we discussed two
paragraphs ago. Our proposals are natural applications of the two statistical
ideas that I mentioned at the beginning of this chapter.

For example, we can bias two items’ coordinates to be close to each other
if they share at least a certain number of common features (Figure 16.1, II).
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TABLE 16.2: Illustrative example: Content information about the four books
in Table 16.1. Italicized words are used as abbreviated descriptions of each
feature in Figure 16.1, III.

Moby Dick Dreams Species Relativity
Themes of conflict

√ √ √
×

Elements of moral philosophy
√ √

× ×
Darkness of human nature

√ √
× ×

Other empirical evidence × ×
√ √

Logical rigor × ×
√ √

A grand new theory ×
√ √ √

Suppose that each item i is associated with a binary content vector ai (e.g.,
a column in Table 16.2, taking “

√
” as 1 and “×” as 0). Then,

Sc(i) = {i′ : a>i ai′ ≥ c}

is the set of all items that share at least c common features with i. In the
iterative procedure to estimate (pu, qi), this added bias amounts to shrinking
the coordinates of each item (qi) at every step toward the mean coordinates
of those that share enough common features with it — that is, shrinking qi
toward ∑

i′∈Sc(i)

qi′

|Sc(i)|
,

where |Sc(i)| denotes the size of the set Sc(i). We call this the shrinkage
approach.

Alternatively, we can force an item’s coordinates to depend on the item’s
content features by means of a regression relationship, i.e.,

qi = Bai. (16.2)

In a K-dimensional user-item map, each item i has K coordinates. For each
item i, Equation (16.2) actually encodes K simultaneous regression relations,

qi(k) =
∑
j

B(k, j)ai(j), (16.3)

one for each coordinate k. Under the constraint (16.2), the problem becomes
one of estimating (pu, B) rather than (pu, qi). This can be accomplished by
making a relatively small change to the iterative procedure for estimating
(pu, qi). We call this the regression approach.

For our illustrative example (Tables 16.1–16.2), predictions made by these
different matrix factorization approaches (all using K = 2) are given in Ta-
ble 16.3. By directly comparing with Table 16.1, we can see that incorporating
content information contained in Table 16.2, whether by shrinkage or by re-
gression, has indeed led to more accurate predictions of the four “missing”
entries (emboldened in Table 16.3).
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TABLE 16.3: Illustrative example: Predictions made by different matrix fac-
torization methods using K = 2. (I) Without incorporating any content in-
formation. (II) Incorporating content information by the shrinkage approach.
(III) Incorporating content information by the regression approach.

Moby Dick Dreams Species Relativity
(I) Alice 89 48 30 10

Bob 90 70 51 11
Cathy 11 52 70 90
David 10 30 49 89

(II) Alice 89 63 30 10
Bob 90 70 37 11
Cathy 11 37 70 90
David 10 30 63 89

(III) Alice 90 75 30 10
Bob 90 70 25 10
Cathy 10 25 70 90
David 10 30 75 90

An interesting by-product of the regression approach is that each column of
the matrix B — a vector in RK — can be interpreted as the latent coordinates
for each corresponding content feature. To see this, notice that Equation (16.3)
can be interpreted as

(kth coordinate of item i) =∑
j

(kth coordinate of feature j)× 1(item i has feature j),

where 1(E) is an indicator function taking on the values of 1 or 0 depending on
whether E is true or false. Therefore, not only can we create a user-item map
to facilitate personalized recommendations, we can also put content features
onto the same map (Figure 16.1, III), and gain fresh insight about the content
features themselves. For example, using data from http://allrecipes.com/

and treating ingredients as content features of recipes, we have found “moz-
zarella” and “firm tofu” to be similar ingredients, but “cottage cheese” and
“Swiss cheese” to be dissimilar ones; using the “MovieLens 100K” data
from http://www.grouplens.org/ and treating genres as content features
of movies, we have found that “action” movies are more similar to “science
fiction” movies than to “war” movies, whereas “war” movies are closer to
“animation” movies than to “action” movies (Nguyen and Zhu, 2013).
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16.6 Discussion

We are currently contemplating how to incorporate content information into
the matrix completion approach. As mentioned earlier, the matrix completion
approach is based on the premise that the completed matrix should be low-
rank, without being explicit about the nature of the low-rankness. The lack of
an explicit parameterization makes the kind of extensions we have proposed to
the matrix factorization approach elusive, and it appears to us that a different
paradigm is needed altogether. There are certainly many opportunities for
statisticians to make contributions.
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