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15.1 Introduction

As scientific disciplines, statistics and finance had their first date in 1900. They
met through the work of French mathematician Louis Bachelier, whose thesis
(Bachelier, 1900) used the familiar bell-shaped curve or Normal distribution
to model differences between prices over time. He was also the first to use
another well-known probabilistic object, Brownian motion, to evaluate stock
options and model asset returns. Five years later, Albert Einstein used the
same process to model the displacement of molecules in a liquid.

Statistics and finance have been together ever since. One of their offspring
is financial engineering, a multidisciplinary field that combines financial the-
ory with statistical techniques and computational tools. Financial engineers
evaluate options, assess risks, manage portfolios and contribute to the devel-
opment of financial products. Fundamentally, these various tasks all rely on
the crucial ability to construct accurate statistical models for predicting the
behavior of assets and other financial products. Bad models may lead to wrong
decisions and considerable financial losses.

Selecting, fitting and validating models for financial data is key to all re-
search and development activities in financial engineering. This is the hallmark
of statistics. But as we shall see, statisticians also make significant contribu-
tions to more specialized areas of financial engineering in which estimation and
prediction play a critical role, together with the numerical implementation of
options and hedging evaluation techniques.
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15.2 Modeling

To illustrate the challenges involved in financial data modeling, consider the
following simple problem, which is nevertheless typical of the issues faced daily
by traders on the stock market. Imagine that the current market value of one
share from Apple is $450 and that for $18, you can purchase a call option
on this asset. If you do, you earn the right to buy one share from Apple for
$460 (the strike price) at any moment of your choice within the next two
months (the maturity period). If the price of this share stays below $460 in
that period, you will never exercise the option and you will have wasted $18.
But if the price goes up and you exercise your option when the share is at
$520, say, you will have saved $520 − $460 − $18 = $42. Is this an interesting
business opportunity?

To answer this question, we must first choose a plausible model for the way
in which the underlying asset varies over time. Then we must use previous data
to check whether the assumptions of this model hold, at least approximately.
If the model is satisfactory, we can then assess whether the price of the asset
and the option are “fair” in some way or other. A rational decision to buy the
option or not can then be made. But whether the decision is right depends
critically on the choice of model and, more specifically, on its appropriateness
for the data at hand.

The financial literature abounds with statistical models for option pricing.
The most commonly used model was articulated by the American economist
Fischer Black and his co-author, Canadian-born financial economist Myron
Scholes, in their 1973 paper, “The Pricing of Options and Corporate Lia-
bilities,” published in the Journal of Political Economy (Black and Scholes,
1973). American economist Robert Merton later contributed to the refinement
of the model.

15.2.1 Black–Scholes–Merton Model

The BSM model due to Black, Scholes, and Merton makes assumptions on the
probability distribution of the return of an asset as it varies in time. Suppose
for instance that the price of an asset is observed a times 1, 2, . . . Denote these
prices by S1, S2, . . . The return of the asset at time k > 1 is then defined by

Rk = log (Sk/Sk−1) .

In its simplest form, the BSM model then states that Rk has the same bell-
shaped or Normal distribution at every time point k in time, and that this
distribution depends in no way on past observed values R1, . . . , Rk−1. The
latter hypothesis is called serial independence.

The hypotheses of the BSM model are quite strong. In particular, the
choice of the bell-shaped curve for the returns means that wild variations in
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FIGURE 15.1: Prediction intervals for future prices (left) and returns (right)
for the next 21 trading days predicted by the Black–Scholes model when the
current price is $450.

prices are unlikely to occur. The standard deviation is a measure of the spread
of a distribution. For a Normal distribution, there is only a .3% probability
that a future return will lie more than three standard deviations away from
the mean. For other distributions, this probability can be much greater, up to
about 10 or 11%.

For example, based on recent observations of Apple shares (2009–11), typi-
cal values for the mean of the daily returns is .003, while the standard deviation
is .02. Under the hypotheses of the BSM model, 99.7% of the future returns
should thus lie in the interval .003 ± .06, that is, between −.057 and .063.
Prediction intervals of the prices and returns for the next 21 days are given in
Figure 15.1. The interpretation of these intervals is that the probability the
stock price, or return, on any given day lies between the limits in the figure
is 99.7%. Notice that the prediction intervals for returns all have the same
width; this is a consequence of the model assumptions.

Merton and Scholes won the Nobel prize in Economics in 1997 for their
work on this subject (unfortunately, Black died in 1995). They were aware
that both assumptions in their basic model were debatable; students and col-
leagues helped them to refine it in later work. The most glaringly simplistic
assumption is the hypothesis of serial independence: in practice, financial re-
turns are almost always dependent on previous values, and hence any decision
based on a model that ignores this fact is bound to spell trouble eventually.

There is a whole slew of statistical procedures for testing whether a finan-
cial series is serially dependent or not. For recent contributions by Canadian
statisticians, see, e.g., Genest and Rémillard (2004) and Genest et al. (2007).
Having rejected the hypothesis of serial independence, one must turn to time
series models. Such models are far better at reflecting the variation of returns
and other financial variables in time, but they are also more complex. Their
use requires much more sophisticated statistical tools, many of which are still
under development.
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15.2.2 Extensions of the BSM Model

In most financial time series models, the current value of returns is not only
a function of previous values but also of exogenous variables such as interest
rates or tax structures. Good models involve parameters that can be adjusted
to fit the data at hand, and the residual (hopefully small) fluctuations that
remain unexplained are accounted for by an unobservable error term called
an innovation. For example, it is typical to assume that the return Rk at time
k is of the form

Rk = µk + σkεk, (15.1)

where µk and σk represent the mean and standard deviation of the distribution
of Rk. The innovations ε1, ε2, . . . are generally assumed to be independent
and to have the same distribution with mean 0 and standard deviation 1. The
formulas for µk and σk typically involve previous returns and other unknowns.

As an illustration, suppose that we take

µk = µ+ φRk−1, σk = σ > 0.

The first equation amounts to saying that the average return value at time k is
a linear function of Rk−1 with slope φ and y-intercept µ. The second equation
states that all returns R1, R2, . . . have the same standard deviation σ. This
model is called the “autoregressive model of order 1” or AR(1) for short. The
original Black–Scholes model is an AR(1) model with φ = 0.

When the variability or volatility in the returns is thought to change with
time, a popular option is to take

σ2
k = ω + ασ2

k−1ε
2
k−1 + βσ2

k−1,

in which case the model is called GARCH, as in “generalized autoregressive
conditionally heteroscedastic.” American economist Robert Engle won the
2003 Nobel Prize in Economics, sharing the award with British economist
Clive Granger, for methods of analyzing economic time series with time-
varying volatility.

Figure 15.2 shows 99.7% prediction intervals for the prices and returns
for 1 Apple share based on a GARCH model with Normal innovations and
parameters µ = .0032, ω = .1356 × 10−4, α = .0881, and β = .87. Here we
assumed φ = 0. These parameter values were chosen on the basis of the same
data as for Figure 15.1; see p. 233 in Rémillard (2013) for details.

Comparing Figures 15.1 and 15.2, one can see that the range of values
is larger for the GARCH model than for the Black–Scholes model. While
the Black–Scholes AR(1) model assumes that the returns are independent
and identically distributed, the GARCH extension makes the more realistic
assumption that the return at time k depends on the performance of the stock
at earlier dates. As a result of this serial dependence, the prediction intervals
for the future return values are not all identical; they vary as a function of time.
However, as can be seen from Figure 15.2, they stabilize after a while. In other
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FIGURE 15.2: Prediction intervals for future prices (left) and returns (right)
for the next 21 trading days predicted by the GARCH model when the current
price is $450.

words, the distribution of the long-term return values gradually stabilizes or
converges to a so-called stationary distribution. In particular, the long-term
prediction becomes a constant, which is usually the mean of the stationary
distribution.

In practice, it sometimes happens that series of financial returns move
quite a distance from the mean of their stationary distribution. However, they
will eventually come back to it. This so-called “return-to-the-mean” property
is a consequence of the famous ergodic theorem, established by the American
mathematician George David Birkhoff. It is therefore important for modelers
and financial analysts to consider models that have a (unique) stationary
distribution. It is not always possible to produce a formula for this distribution
but for GARCH models, say, it is relatively easy to simulate it using computer-
intensive methods. One could, for example, use the Monte Carlo Markov Chain
approach (MCMC) discussed by Jeffrey Rosenthal in Chapter 6.

15.2.3 Choice of Distribution for the Innovations

Another important aspect of the model building process is the choice of dis-
tribution for the innovations ε1, ε2, . . . The predictive properties of the model
very much depend on this choice. The Normal curve is only one option. An-
other popular choice is the Student t distribution, which has fatter tails, mean-
ing that its range of likely values is larger than for the Normal. This choice is
often dictated in practice by the presence in the series of a larger proportion
of extreme observations than we would expect under the Normal paradigm.

Figure 15.3 shows the impact of replacing the Normal distribution by a
Student t5 in the GARCH model described above. As one can see, the pre-
diction intervals are now wider. Suppose, for example, that the current price
of one Apple share is $450 and that we wish to predict its price in 21 days,
based on the GARCH model. If the Normal distribution is used, there is a
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FIGURE 15.3: Prediction intervals for future prices (left) and returns (right)
for the next 21 trading days predicted by the GARCH model with Student t5
innovations when the current price is $450.

99.7% chance that the price will fall between $366 and $633. If a Student t5
distribution is used, however, there is about a 99% chance that it will fall in
this interval. The 99.7% prediction interval for the price is now much wider;
it extends from $352 to $658!

What principles can guide us in choosing an appropriate distribution for
the innovations? A major stumbling block is that for models defined by equa-
tion (15.1), the variables ε1, ε2, . . . cannot be observed or measured except in
the rare (not to say unrealistic) cases where all model parameters are known.
We are thus faced with a situation where we cannot even plot a simple his-
togram of these innovations to guide us in the choice of their distribution.

The solution to this problem is to replace the unobservable innovations by
proxies, that is, quantities that can be computed from the data and which
closely resemble or imitate the innovations. The best proxy candidates are
the so-called model residuals, denoted e1, e2, . . . The kth residual can be com-
puted as

ek =
Rk − µ̂k
σ̂k

.

In this formula, µ̂k and σ̂k are estimated values of µk and σk, respectively.
Histograms and other graphical representations of the residuals can then be
plotted to help us choose an appropriate distribution.

At this stage, it is tempting to go one step further by trying to apply
standard statistical tests to the residuals in order to check various assump-
tions about the innovations εk. As it happens, however, conventional tests
were developed for variables that are truly observable and independent of one
another. This is not the case for residuals and, as many statisticians have be-
gun to realize, this sometimes makes the tests non-operational, because when
residuals are used, the distributions of the statistics are different from those
when the mean and standard deviation are known, and not estimated. For
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details, see Bai (2003) or Ghoudi and Rémillard (1998, 2004), among others.
Therefore, new methodologies adapted to residuals must be developed.

15.2.4 Challenge of Model Validation

Today, the vast majority of articles in financial engineering, including doc-
toral dissertations, involve financial data modeling. The major journals not
only require that the models be thoroughly investigated from a theoretical
point of view, but also that they be tried out in applications and that their
characteristics be showed to fit the data at hand.

Similarly, financial institutions need to validate the assumptions of the
models they rely on to develop new financial products. For obvious reasons,
it is increasingly difficult to convince investors of the potential of a new fi-
nancial product if its relevance and the adequacy of the models on which it is
based cannot be justified properly. It is imperative, therefore, to understand
the effect of the use of residuals on statistical tests and procedures, and in par-
ticular to develop new ways of validating financial models. This is currently
the subject of much fundamental research in statistics, both in Canada and
abroad.

In order to validate the adequacy of a proposed model for a given dataset,
a data analyst must be able to perform the following tasks:

1. Detect change points in the distribution of innovations over time.
Change points are important characteristics of financial data. In
particular, a change in the distribution is likely to occur when the
market crashes. As a result, it might be unrealistic to assume that
over a long period of time, the distribution of innovations is the
same. This is why statistical techniques have to be used to detect
change points. However, remember that the data show serial depen-
dence, so change point tests would be applied to residuals. Recent
results suggest that this can be done (Rémillard, 2012).

2. Find a plausible model for the distribution of returns and estimate
the parameters as precisely as possible. Suppose for instance that
a GARCH model has been fitted under the assumption that the
innovations are Normally distributed. A specification test must then
be used to check whether this assumption is supported by the data;
see, e.g., Ghoudi and Rémillard (2013) and references therein.

3. Check whether the innovations are serially independent. Testing this
hypothesis using the residuals is not an easy task. In fact it can
be very difficult, especially for GARCH models; see Berkes et al.
(2003), among others. Canadians have contributed to the develop-
ment of new statistical techniques to handle this problem (Genest
et al., 2007). Their approach works for simple models but more re-
search is needed to develop appropriate techniques for more complex
models like GARCH.
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4. If necessary, model dependence between time series. When several
financial series are involved, as is often the case in practice (options
on several securities, etc.), one must also model the dependence
between innovations in each series and test the adequacy of the de-
pendence model for these multivariate data. Copulas can be used to
this end (Embrechts et al., 2002), but much additional work will be
required to develop their use to its full potential. For more informa-
tion on this topic, see Chapter 4 by Christian Genest and Johanna
Nešlehová, and Chapter 8 of Rémillard (2013) for applications in a
financial engineering context.

15.3 Applications to Financial Engineering

Once financial data have been modeled correctly, one can go a step further and
implement the model. In this section, we will review briefly three important
financial applications for these models: portfolio management, option pricing,
and risk management.

15.3.1 Portfolio Management

Following Bachelier (1900), the importance of the Normal distribution in fi-
nance was reaffirmed by American economist Harry Markowitz. In his doc-
toral dissertation, Markowitz (1952) used a weighted sum of Normally dis-
tributed random variables to model the return of a portfolio. More precisely,
if ω1, . . . , ωd represent the fractions of the wealth invested in d ≥ 2 possibly
risky assets with returns R1, . . . , Rd, the return of the portfolio with weights
ω1, . . . , ωd is then

Pω =

d∑
j=1

ωjRj .

Note here that we are assuming w1 + · · · + wd = 1; in other words, all the
money must be invested in the assets (one of them could be a bank account).
The weights are usually positive, but they could be negative too. A negative
weight corresponds to a strategy called short-selling; it consists of cashing the
present value of the asset without selling it, but the asset must be bought at
the end of a given period. It is basically like borrowing the value of a stock.

In financial markets, short-selling is often used to reduce the risk in a
portfolio. To illustrate, suppose that at one point in time, an investor has in
hand one share of Apple listed at $450 and that he chooses to be “short”
10 shares of Microsoft listed at $30 per share. This means that he will cash
immediately 10× $30 = $300, thereby reducing his current investment to $150.
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The weights associated with this investment strategy are ω1 = 450/150 = 3 for
Apple and ω2 = −300/150 = −2 for Microsoft. This way, ω1 + ω2 = 3 − 2 =
1. In return, however, the investor will need to buy 10 shares of Microsoft
at some future point in time, whatever its price may be at the time. One
advantage of this strategy is that if the values of the two stocks go down, the
investor can still make money if Apple performs better than Microsoft. For
example, if both stocks decrease by $1, the value of the portfolio will be $459.
From the borrowed $300 obtained by short-selling Microsoft, you just have to
reimburse $290.

In the above example, ω1 = 3 and ω2 = −2 are only one possible choice
of weights. Can we do better? Using the standard deviation as a measure of
the risk of a portfolio Pω, Markowitz looked at the problem of minimizing
this risk for a given average return; he also considered the complementary
problem of maximizing the expectation Rω = E(Pω) for a given level of risk.
Assuming only that the weights sum up to 1, Markowitz was able to solve
this optimization problem using elementary calculus. It can be shown that
the variance (i.e., the square of the standard deviation) of the portfolio Pω is
given by

σ2
ω =

d∑
i=1

d∑
j=1

ωiωjσiσjρij . (15.2)

Therefore, the problem is to minimize σ2
ω, subject to the constraints

d∑
j=1

ωj = 1 and

d∑
j=1

ωjµj = µ.

Here µj and σj are respectively the mean and standard deviation of return
Rj , µ is the target mean of the portfolio, and ρij is the so-called Pearson
correlation coefficient between the returns Ri and Rj , which measures the
degree of dependence between them. This leads to the concept of efficient
frontier, which is the graph of the maximal expected return as a function of the
standard deviation. For this and subsequent work on portfolio management,
Markowitz was awarded the Nobel Prize in Economics in 1990.

For example, using the portfolio with weights ω1 = 3 and ω2 = −2, we
end up with an average return of .2627 and a standard deviation of .0514, as
marked by a square on the graph of the efficient frontier in Figure 15.4. This
portfolio is optimal for a standard deviation of .0514, but not for a standard
deviation of .03, as seen from the graph.

The field of portfolio management, which basically consists in finding op-
timal weights of a portfolio changing from period to period, is a very active
field of research from the statistical point of view. The issue of non-Normal
returns is particularly relevant. Furthermore, portfolio managers may be in-
terested either in maximizing a utility function, which represents the value of
wealth of the investor, or in minimizing a risk measure, such as the standard
deviation.
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FIGURE 15.4: Graph of the efficient frontier, position of the portfolio with
weights ω1 = 3 and ω2 = −2, and positions of some portfolios with random
weights.

Among the problems of interest for statisticians, one can look at constraints
on the weights, discrete time and continuous time models, etc. The compu-
tation of the optimal solution for a portfolio composed of a large number
of assets is also quite challenging. Several statisticians working in Canadian
universities have contributed to the field; see Watier (2003), Vaillancourt and
Watier (2005), Labbé and Heunis (2007), and Elliott and Siu (2009), to name
a few.

15.3.2 Option Pricing

Going back once again to the case of Apple, assume that we have in hand a
theoretical model that has been validated with data. The next challenge then
lies is the determination of a “fair” price for this option. A price is considered
fair if neither the buyer nor the seller of the option have a chance of making
money while being sure of not losing any money in the process.

The most common way of determining a fair price for an option consists
of choosing an equivalent probability distribution, called the equivalent mar-
tingale measure, under which the actualized value of the asset in the future
is a martingale. A martingale has the property that given the current value,
the expected value at any future time is the same as the current value. To
understand the concept of martingale, suppose for an instant that the value
of an asset would correspond to a gambler’s fortune. To say that the fortune
is a martingale means that there is no optimal way for the gambler to decide
when to stop playing; the average return is the same, whatever the player’s
strategy.
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The existence of an equivalent martingale measure guarantees that there
exists a fair price. In practice, the choice of the equivalent martingale measure
is dictated by the previous real market prices of the option. Then the future
prices of any option can be theoretically determined.

For example, the value of the call option described at the beginning of
Section 15.2 is $18.04 if we assume that the Black–Scholes model is correct
and the annual interest rate is 2%. As it happens, there is only one equivalent
martingale measure in this case. Assuming that the model is correct, we can
compute the chances that a buyer will not exercise the call option. This prob-
ability is approximately 22%. In this case, the buyer will actually lose $18.10,
which is the value of $18.04 in two months, assuming an annual interest rate
of 2%.

When the price of the stock is above the strike price of $460, the buyer
will also lose money if the future price is lower than $460 + $18.04 = $478.04.
According to the model, this happens 33% of the time. Overall, the negative
gain (or loss) turns out to be −$15 while the average positive gain is $63.

A histogram of the distribution of the net gain is given in Figure 15.5.
Note that the average net gain is $37.03. Therefore, here it seems that the
buyer has a net advantage over the seller of the option. However, if the seller
could trade continuously on Apple, he could generate exactly the payoff of
the option, i.e., what is due to the seller at maturity, by building a portfolio
composed only of cash and a fraction of the asset. This was shown in the
article of Black and Scholes (1973). It means that the position of the seller
is not risky at all, while the position of the buyer is quite risky. In addition,
if the price paid for the option is larger than the fair price $18.04, there is a
way for the seller to make money for sure. If the price paid for the option is
less than $18.04, then there is a way for the buyer to make money for sure.

Given an equivalent martingale measure, one cannot find in general an
explicit formula for an option price. However, the option price being an average
value, or expectation, one can use simulation algorithms to price it. This was
first proposed by Canadian-based finance Professor Phelim Boyle (1977). For
other applications of Monte Carlo simulation algorithms in finance, see, among
others, the books by American mathematician Paul Glasserman (2004) and
Canadian statistician Don McLeish (2011) from the University of Waterloo.
Monte Carlo methods are particularly effective to demonstrate to potential
investors that a proposed product or strategy is interesting for them, as was
done in the previous example.

15.3.3 Risk Management

Risk management is another key field of applications of statistical methods
in financial engineering. The importance of the field is such that some even
believe that risk assessment should be integrated into the business student
curriculum (The Economist , 2012). An excellent reference on risk management
and statistical methods is the book by McNeil et al. (2005).
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FIGURE 15.5: Histogram of the net gain for buying the option obtained by
simulating 10,000 values of the stock price at maturity.

Since 1988, the Basel Committee on Banking Supervision has issued three
supervisory accords — Basel I, II and III — that comprise recommendations
on banking regulations. These recommendations are being implemented by
many financial institutions worldwide. In particular, the Basel II Accord, ini-
tially published in June 2004, called for for the computation of risk measures
and capital requirements to guard against three important sources of risks:
risks of default of debt payments of borrowers (credit risk), risks of losses
on the markets (market risk), and risk of loss resulting from inadequate or
failed internal processes, people and systems, or from external events (opera-
tional risk).

At the heart of risk management is the issue of how to measure risk.
Beginning with Markowitz (1952), the standard deviation was the measure
of risk in use for a long period. Since the Basel Accords, the so-called Value-
at-Risk (VaR for short) has replaced the standard deviation as a measure of
market risk. The VaR corresponds to the quantile (usually of order 99.9%)
of a loss, meaning that 99.9% of the losses should be smaller than the VaR.
Stimulated by the Basel I Accord, Artzner et al. (1999) proposed axioms
that should be satisfied by what they called “coherent risk measures.” Today,
the issue of risk measurement is by no means settled and many researchers,
including statisticians, continue to work on this problem.

One of the main challenges in risk management is how to model individual
risk factors and account for their interdependence. Two areas of modern statis-
tics are relevant to this problem: copula modeling and extreme-value theory.
The latter is particularly important for market and operational risks; see, e.g.,
Roncalli (2004). As its name indicates, extreme-value theory deals with the
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modeling of extremal events, such as sample maxima or losses exceeding high
thresholds. Statistical tools developed in that context allow researchers to ex-
trapolate beyond the range of observable data. Such extrapolation is required
for the computation of risk measures and financial reserves, and extreme-
value techniques are particularly useful because loss distributions typically
have considerably fatter tails than the omnipresent Normal distribution.

Extreme-value theory has been an integral part of probability and statis-
tics for over 50 years. Several Canadian statisticians have contributed to it,
including UBC Professor Harry Joe and my colleague at HEC Montréal, Deb-
bie Dupuis, but also my frequent coauthors, Christian Genest and Johanna
Nešlehová, currently both at McGill. Yet some people are still oblivious to
these developments. In his book which popularized the expression “Black
Swans,” Lebanese American essayist Nassim Nicholas Taleb (2007) even goes
as far as blaming statisticians for not studying extremal events!

Another important risk management challenge is modeling times until de-
fault in the context of credit risk. Surprisingly perhaps, models and techniques
developed for the analysis of survival data in medical studies come in handy;
see, e.g., the book by University of Waterloo professor Jerry Lawless (2003).
One specific twist of credit risk modeling is that defaults do not occur often,
and in fact you would prefer that they never occur! Simplifying assumptions
typically need to be made in order to model default times of firms for which
no defaults were ever observed. The articles by Merton (1974) and Jarrow
et al. (1997) count among the seminal contributions to this issue. Modeling
default times on mortgages and credit cards is also quite a challenge. Yet
another problem is how to account for dependence between default times.
In fact, such dependencies played a major role in the so-called subprime cri-
sis that led to a financial crisis and a subsequent recession in 2008. In that
context, the risk of “contagion,” producing interdependence of defaults, was
underestimated by financial institutions and rating agencies.

Risk management is a fledgling field of research. For example, as this chap-
ter is being written, liquidity risk is a hot and emerging topic. This risk has
not yet been precisely articulated but in broad terms, it refers to the fact
that at some point, there are too few buyers or sellers. How best to measure
liquidity risk is a subject of debate and finding appropriate ways of estimating
it is one of the future challenges; see, e.g., Jarrow et al. (2012).

15.4 Final Comment

The recent financial crisis has put the use of statistics in finance in a spotlight.
The use and abuse of mathematical models and statistical methodology has
been the object of much polemic in the popular press. For example, former



256 Statistics in Financial Engineering

French Prime Minister Michel Rocard wrote, in the 2–3 November 2008 edition
Le Monde,

“On reste trop révérencieux à l’égard de l’industrie de la finance et de
l’industrie intellectuelle de la science financière. Des professeurs de maths
enseignent à leurs étudiants comment faire des coups boursiers. Ce qu’ils
font relève, sans qu’ils le sachent, du crime contre l’humanité.”

The response of senior French probabilists and academicians Jean-Pierre Ka-
hane and Marc Yor is well worth reading (Kahane et al., 2009). In the English
language press, British journalist Felix Salmon (2009, 2012) wrote

“A formula in statistics, misunderstood and misused, has devastated the
global economy.” [The formula in question is the so-called bivariate Gaus-
sian copula; again, see Chapter 4 by Genest and Nešlehová.]

Are statistical techniques really so dangerous? Of course not! It is the duty
of statisticians to educate financial practitioners and make them aware of the
limits of their models. The same is true in every other area of application of
statistical sciences.
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