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13.1 Introduction

Patients with end-stage renal disease (ESRD; also known as kidney failure)
must address the deficit in renal function through dialysis or kidney trans-
plantation. Kidney transplantation has been repeatedly demonstrated to be
superior to dialysis in terms of patient survival (Schaubel et al., 1995; Wolfe
et al., 1999; Rabbat et al., 2000). However, there are tens of thousands more
patients in need of a kidney transplant than there are available donor kidneys.
As a result, patients typically begin renal replacement therapy with dialysis,
and those deemed medically suitable are placed on a wait list for transplant.
Once on the wait list, a patient may later be removed if his or her health con-
dition declines to the point where transplant surgery is considered futile. In
the United States, deceased-donor kidneys are allocated on a first-come first-
served basis. Patients on the wait list move toward the top of the list when
patients above them on the list die, receive a transplant, or are removed.

The continuing shortage of deceased-donor kidneys has prompted the in-
creased frequency of transplantation with expanded criteria donor (ECD) kid-
neys (Port et al., 2002). These are kidneys obtained from deceased donors who
were age≥ 60; or of age 50–59 with one or more of the following characteristics:
death due to stroke, history of hypertension, serum creatinine ≥ 1.5µmol/L.
As established by Port et al. (2002), ECD kidneys are associated with some-
what poorer outcomes (e.g., a 70% relative increase in the rate of graft failure).
On the other hand, ECD kidneys are more available than non-ECD kidneys
since patients are generally more likely to decline ECD offers. The question we
address is whether a patient should accept an ECD transplant (considered as
an experimental treatment), or whether he/she should opt for “conventional
therapy.” The latter would entail refusing ECD transplantation, with the hope



210 Assessing the Effect on Survival of Kidney Transplantation

of later receiving a non-ECD transplant; this comes with the risk that they
will have to wait so long that the patient dies on the wait list or is removed.

In clinical settings, patients often have to choose between different thera-
pies. For chronic conditions (particularly those associated with high rates of
adverse events), a patient may choose the treatment course that offers the
longest survival time, although other criteria such as quality of life may also
enter the decision. The randomized controlled trial, in which patients are ran-
domly assigned to experimental treatment or control groups, is widely viewed
as the gold standard for the evaluation of treatments. However, the random-
ization of treatments is not possible in many settings due to ethical and/or
logistical considerations. In such settings, so-called observational data offer
the primary basis of treatment evaluations. The lack of randomization re-
quires that the statistical analyses accurately account for imbalances between
treatments with respect to measured patient characteristics, such as age, BMI
or co-morbid conditions. These are often referred to as covariates, and of par-
ticular concern are covariates that are strongly related to the risk of death.
Failure to adjust for such risk factors may artificially make one treatment
appear to be better than another when, in fact, treatment-specific differences
in outcomes rates were due only to differences in treatment-specific covariate
distributions.

In clinical studies concerning adverse events, the observation period typ-
ically concludes before some subjects have experienced the event of interest.
In such cases, a subject’s event time (often termed a “failure” time) is said
to be right censored; it is known only to be greater than their follow-up time.
Survival analysis methods are well-suited to handling right censored failure
times. For example, the Kaplan–Meier estimator (Kaplan and Meier, 1958)
gives a simple estimate of the probability of remaining alive at various follow-
up times. In the case of observational studies of patient survival, it is often
desirable to assume a particular statistical model that expresses the death
rate (more formally known as the hazard function) as a function of patient
characteristics or covariates. Such models are referred to as regression models,
and for close to forty years, the Cox regression model (Cox, 1972) has been the
method of choice for regression analysis of censored survival data. This model
allows for the estimation of covariate effects and, as such, yields covariate-
adjusted comparisons of treatment options. Covariates in a Cox model may
be fixed at baseline (i.e., time 0, the start of follow-up), or may vary during
follow-up. The description of such methods is available from many sources;
see, e.g., Kalbfleisch and Prentice (2002), Klein and Moeschberger (2003), and
Lawless (2003).

In this chapter, we describe the application of both traditional and more re-
cently developed methods in survival analysis for the comparison of therapies.
Here, the available data are complicated by several issues: treatment is not
assigned at time 0, but rather at some point after initial eligibility; although
experimental and conventional forms of treatment are available, treatment
availability is limited due to a perpetual excess of demand relative to supply;
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the treatment received by a patient is not randomized; and patients can be
declared ineligible for treatment.

In the next section, we describe the kidney transplant registry data used
for our analyses and formulate the problem more precisely. In Section 13.3, we
describe a traditional attempt to address the issues described in the preceding
paragraph. In Section 13.4, we describe a modification of the methods used
in Section 13.3. A more recently developed and generally more satisfactory
approach to the problem is described in Section 13.5. Some discussion is pro-
vided in Section 13.6, including a comparison of related methods not used in
this chapter.

13.2 Study Population and Notation

Data were obtained from the Scientific Registry of Transplant Recipients
(SRTR; www.srtr.org), a nationwide population-based organ failure registry.
Patient-specific data are reported by the transplant centers to the Organ Pro-
curement and Transplantation Network, which oversees solid organ transplan-
tation in the United States.

For analyses presented in this chapter, the study population was comprised
of adult (age ≥ 18) patients initially wait-listed for kidney transplantation in
the US between January 1, 1998 and December 31, 2006. For each patient,
follow-up began at the date of wait-listing and concluded at the earliest of
death, receipt of living-donor transplant, loss to follow-up, or the end of the
study’s observation period: December 31, 2006.

Table 13.1 presents a summary of events for the study population. Patients
entered the SRTR database at the time of being placed on the wait list, which
serves as the natural time 0. Just under 30% of the study population received
a deceased-donor kidney transplant, and less than one-fifth of these received
an ECD kidney. More than 10% of patients were removed from the wait list
prior to transplant or death. Since the death time is known for all patients

TABLE 13.1: Analysis of SRTR data: Event counts.

Event Count Percentage of Wait-Listed
Wait-Listed 170,415 100
Transplanted: ECD 9,423 5.5
Transplanted: non-ECD 49,382 29.0
Died 39,475 23.2
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who died before December 31, 2006, it is not censored by removal. There were
approximately 40,000 deaths observed either before or after transplant.

As described in Section 13.1, the objective is to compare the experimental
treatment (ECD kidney transplantation) with conventional therapy. In the
seminal paper by Wolfe et al. (1999), kidney transplantation was shown to
be associated with a strong and significant decrease in mortality relative to
dialysis among wait-listed patients. Rabbat et al. (2000) replicated this result
through a registry linkage study using data from Ontario, Canada. The main
contribution of these works was to restrict the study population to patients
actually wait-listed for transplantation. Previous studies, e.g., Schaubel et al.
(1995), had compared kidney transplant to dialysis; these studies suffer the
limitation that some of the dialysis patients in the comparison group were
not actually wait-listed and, hence, not really eligible to receive a kidney
transplant. The survival benefit of ECD transplantation is not obvious, based
on the above-listed studies. In aggregate, such studies reveal that ECD kidneys
are significantly more likely to fail, and that kidney transplantation (averaging
over ECD and non-ECD transplants) offers reduced mortality.

We now introduce some notation that will allow us to describe the data for
specific individuals, and the analyses that we consider in subsequent sections.
Let Di denote death time for patient i, measured in days since wait-listing.
Let Ci represent censoring time. Since patients either leave the study by dying
or being lost to follow-up, only the minimum of Di and Ci is observed, and
we set Xi = min(Di, Ci). The time of transplant (if it occurs) is given by
Ti. As mentioned earlier, a patient may be removed from the wait list prior
to transplantation and, if this occurs, we denote the removal time by Ri. We
let A1i = 1 if patient i receives an ECD kidney transplant, and 0 otherwise.
Analogously, A2i is a 0/1 indicator for receiving a non-ECD transplant. The
covariate vector is represented by Zi and, in the present context, is intended
to contain information on characteristics on patient i associated with both
patient survival and the probability of being transplanted. Note that, for pur-
poses of this chapter, the covariate information is recorded at time t = 0 and
not updated.

It is useful to think of the data structure in terms of a state diagram, as in
Figure 13.1. From this perspective, all patients enter the wait list (WL) state
at time t = 0. From there, the patient will either transit to one (and only one)
of the ECD, non-ECD, or removal (R) states, or the patient may reach the
death state (D) without experiencing any of these three events. The death
state can be accessed from any other state. We treat transitions into each of
the ECD, non-ECD and removal states as non-reversible in that a patient that
receives an ECD transplant is considered to be an ECD patient thereafter; the
same holds for non-ECD transplantation. Examples of elements of Zi include
age, gender (represented as an indicator covariate: 0 = male, 1 = female),
race, blood group, and diagnosis category.
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FIGURE 13.1: End-stage renal disease states. WL = wait list; ECD = ex-
panded criteria donor kidney transplant; non-ECD= non-ECD kidney trans-
plant; R = removed from wait list; D = death.

13.3 Analysis Based on Time-Dependent Treatment In-
dicator

In this section, we describe results from a traditional analysis. As a lead-in,
we discuss some ideas related to the analytic approach we take in this and all
subsequent sections of the chapter.

For a potentially censored failure time variate such as Di, interest often lies
in the hazard function, λi(t), which represents the death rate for individual i
at time t; this rate is conditional on survival up to time t. Thus,

λi(t) = Pr(Di = t|Di ≥ t).

Suppose that interest lies chiefly in comparing treated versus untreated sub-
jects with respect to survival, and that treatment is randomly assigned at the
beginning of follow-up (t = 0). We let Ai = 1 for treated subjects and Ai = 0
for untreated subjects. In this simple case, the following Cox regression model
is often used:

λi(t) = λ0(t) exp(βAi) =

{
λ0(t) if Ai = 0,
λ0(t) exp(β) if Ai = 1.

The quantity λ0(t) is the baseline hazard function which, in this case, equals
the hazard function for an untreated subject (Ai = 0). The hazard function
for a treated subject is λ0(t) exp(β); thus, the treatment multiplies the hazard
function by a factor exp(β), which is commonly referred to as the relative risk
due to treatment. If, for example, exp(β) = .6, then treated subjects have a
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death rate that is 60% that of untreated subjects (i.e., there is a 40% reduc-
tion in mortality), which this model assumes to be constant throughout the
follow-up period. In this model, no functional form is assumed for λ0(t) and,
somewhat surprisingly, β can be estimated without simultaneously estimat-
ing λ0(t). Various extensions of this simple model are used in the analyses
presented in this chapter.

Three features of the kidney transplantation study require us to extend
the model described in the preceding paragraph. First, treatment (kidney
transplantation) is not randomized, so a valid comparison of transplanted and
wait list patients requires that patient characteristics be accounted for in the
analysis. Second, treatment is inherently time-dependent; all patients begin
follow-up on the wait list (i.e., untransplanted), with some eventually receiving
a transplant. Moreover, there are are two forms of treatment: ECD kidney
transplant and non-ECD transplant. Each of these aspects is accommodated
by the first analysis we present, which is based on the following model,

λi(t) = λ0(t) exp{β1A1i(t) + β2A2i(t) + β>3 Zi}, (13.1)

where A1i(t) = 1 if patient i receives an ECD transplant before time t (and 0
otherwise); A2i(t) = 1 if patient i receives a non-ECD transplant before time
t (0 otherwise); and Zi is a vector of covariates thought to be associated with
both mortality and kidney transplantation.

For example, if the covariates considered were age (in years) and diabetes
status (coded as 1 for diabetics and 0 for non-diabetics), then the covari-
ate vector for a 60 year-old diabetic would be equal to (60, 1)>, with the >

denoting vector transpose. For this patient, the component in Model (13.1)
corresponding to Z would be β>3 Z = 60β31 + β32, where β31 and β32 are the
parameters measuring the effect of age and diabetic status on the death rate.

The analysis focuses on estimating the parameters β1, β2 and β3. The in-
clusion of the covariate vector in Model (13.1) affects the interpretation of β1

and β2. Specifically, exp(β1) is the relative risk (or hazard ratio) for an ECD-
transplanted patient versus a patient on the wait list at time t, assuming the
patients have identical covariate vectors. Analogously, exp(β2) is the relative
risk for a non-ECD patient versus wait-listed patient, with all covariates equal.
The essence of the covariate adjustment is that between-treatment compar-
isons are interpreted as being among patients with identical covariate vectors.
The distribution of patient characteristics may be quite different across treat-
ment groups, but, provided Model (13.1) is correct, this does not introduce
bias, since the model has explicitly captured the effect of such factors.

Since we seek to evaluate the merits of ECD kidney transplantation specif-
ically, the parameter of chief interest is β1. The key feature of Model (13.1) is
the use of time-dependent treatment indicators, A1i(t) and A2i(t). At t = 0,
both will be set to 0, since by definition patients begin follow-up at the time of
wait-listing. At most one of A1i(t) and A2i(t) will become 1 during follow-up.
The treatment indicators are non-reversible in that, once they jump from 0
to 1, they stay at 1 for the remainder of follow-up.
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TABLE 13.2: Analysis of SRTR data: Results from time-dependent models
(13.1) and (13.2).

Model Contrast Hazard Ratio (95% CI)
(13.1) ECD vs. WL .72 (.69, .75)

non-ECD vs. WL .49 (.48, .50)
(13.2) ECD vs. (WL + non − ECD + R) .98 (.94, 1.02)

Results based on fitting Model (13.1) to the study data are given in Ta-

ble 13.2. We find that the estimated hazard ratio (relative risk) is exp(β̂1) =
.72, indicating that the death rate or hazard is reduced by 28% for a patient
receiving ECD transplantation, compared to a patient not transplanted (the
reference group). The confidence intervals in Table 13.2 represent a margin
of error for the relative risk estimates. The estimated relative risk for a non-
ECD transplant is exp(β̂2) = .49, indicating a 51% reduction in death rate
for a patient who has received a non-ECD transplant, as compared to the
same reference group. Notwithstanding the importance of this result, it does
not completely answer our research question, due to the manner in which
removals and non-ECD transplants are accommodated; issues that we now
describe.

In Model (13.1), a patient who is removed from the wait list stays in the
reference group; this is to avoid what is termed dependent censoring. To clar-
ify, although censoring is an inherent feature of survival analysis, it is typically
assumed that a subject being censored at time t carries no information about
the future death time (other than Di > t, of course) that would have been
observed in the absence of censoring. Here, patients tend to get removed from
the wait list when their condition has deteriorated to the point at which trans-
plantation is considered futile. Therefore, censoring a patient upon removal
would induce dependent censoring.

Although Model (13.1) avoids dependent censoring from removals, the in-
clusion of removals in the comparison group is also of concern. The motivation
for covariate adjustment is to compare an ECD patient to an otherwise equiv-
alent non-transplant patient. However, a patient who is removed is no longer
eligible for an ECD (or a non-ECD) kidney transplant. Therefore, the in-
terpretation of exp(β1) as reflecting “otherwise equal” patients is certainly
suspect.

Moreover, Model (13.1) does not handle non-ECD transplantation in a
manner consistent with the primary research goal, which was to evaluate the
benefit of receiving an ECD transplant. This we consider to be the comparison
of the outcomes of an ECD kidney transplantation with the outcomes that
would have been observed in the absence of an ECD transplant. A patient
who foregoes ECD transplantation (i.e., rules it out as a therapeutic option)
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may have the opportunity to later accept a non-ECD transplant. In fact,
patients who decline ECD transplantation are not doing so because they think
ECD transplantation is no better than remaining perpetually on the wait list,
but because they hope later to receive a non-ECD transplant. Since Model
(13.1) includes the A2i(t) term, patients are essentially transferred out of
the reference group (to which ECD is compared) upon receipt of a non-ECD
transplant. One could argue that such patients should be left in the comparison
group.

Due to the these limitations associated with the analysis of Model (13.1),
our questions regarding the benefit of ECD kidney transplantation remain
unanswered at this point. We investigate a simple alternative to this model in
the next section.

13.4 Modification to Time-Dependent Analysis

In an attempt to remedy the handling of non-ECD transplants, an alternative
time-dependent model is given by

λi(t) = λ0(t) exp{βEA1i(t) + β>0 Zi}, (13.2)

which results from deleting the A2i(t) component from Model (13.1). Under
this approach, patients appropriately remain in the reference category both
after being removed and after receiving a non-ECD transplant.

Results based on Model (13.2) are given in Table 13.2, where it now appears
that there is essentially no difference between receiving ECD transplantation
and not receiving an ECD transplant, with exp(β̂1) = .98 and p = .25. The
reference category is fundamentally different from Model (13.1), in that sur-
vival of the ECD group is being compared to survival of all others (wait list,
non-ECD, removed) combined.

However, Model (13.2) also has some important drawbacks. It treats re-
movals exactly as in Model (13.1) and so is subject to the same criticism as
above. Thus, a patient receiving an ECD transplant at time t is still compared
to a reference group that includes patients who were removed prior to time t
and so were not eligible for transplantation (ECD or non-ECD) at time t.

This is symptomatic of a more general problem with both Models (13.1)
and (13.2). Essentially, the timing of events is not accounted for properly.
Consider Figure 13.2, which shows event histories for six hypothetical patients.
The patient i = 1 receives an ECD transplant (labeled in the figure by E); at
the time of that ECD transplant, patient i = 2 had already received a non-
ECD transplant (labeled by N). Under Model (13.2), patient i = 2 is included
in the comparison group for patient i = 1. But this seems inappropriate since
at the time patient i = 1 chose to undergo ECD transplantation, patient i = 2
had already received a non-ECD transplant and could not have made the
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FIGURE 13.2: Event occurrences for n = 6 patients (i = 1, . . . , 6): E = ex-
panded criteria donor (ECD) kidney transplant; N = non-ECD kidney trans-
plant; R = removed from wait list.

same treatment decision. However, patient i = 3, who received a non-ECD
transplant, would be appropriate to include in the comparison group, since
that patient was transplant-eligible at the time patient i = 1 underwent ECD
transplantation. Clearly, analogous comments apply to the two patients in
Figure 13.2 that were removed from the wait list (i = 5 and i = 6, whose time
of removal is identified by R). It would not be appropriate to include patient
i = 5 in the comparison group, since this patient was removed before patient
i = 1 received an ECD transplant. However, it would be appropriate to include
patient i = 6 since the removal time follows the time of ECD transplantation
for patient i = 1.

In considering the limitations associated with model (13.2), and Fig-
ure 13.2, it appears that blanket rules regarding non-ECD transplantation
and removal are likely to result in an interpretation for β1 that does not ad-
dress the research question. However, the preceding paragraph suggests that
definition of the appropriate comparison group is straightforward for any in-
dividual patient. This is implemented in the next section where we customize
the comparison groups for each ECD recipient individually.

13.5 Sequential Stratification

Ideally, ECD kidney transplantation would be evaluated through a random-
ized controlled trial. In this trial, all patients would be placed on the wait
list at the same time, and each time an ECD kidney was procured, a patient
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currently on the wait list (i.e., not already removed or transplanted) would
be randomly selected to receive the donor kidney; this patient would then
represent the “experimental treatment” group. A set of patients who were
also eligible to (but did not) receive the ECD kidney would be used as a
comparison group, perhaps through matching and/or random selection from
those available. These patients represent the “conventional therapy” group,
where conventional therapy allows all subsequent events except receipt of the
experimental treatment. Note that not being already removed and not hav-
ing already received a kidney transplant at the time of the index patient’s
ECD transplant are entry criteria to the comparison group. Note that, in
the comparison group, a comparator patient is not censored at subsequent
(post-matching) removal or non-ECD transplantation, since such events are
standard sequelae of conventional therapy. Comparison patients would be cen-
sored when they receive an ECD transplant, since they have then essentially
crossed over into the experimental treatment arm and, therefore, no longer
contribute follow-up pertinent to the conventional therapy arm. The process
of randomizing an incoming ECD kidney and selection of matched conven-
tional therapy patients would be repeated many times, and survival outcomes
could then be compared.

Such a trial can never occur, due to logistical and ethical considerations.
However, since we take the time of wait list as the origin for all patients,
the observed data are quite similar to this; of course the observed data are
not randomized, but we could attempt to replace the randomization with
careful covariate adjustment. In fact, the largest discrepancies in the setup
described in the preceding paragraph and that presented in Sections 13.3–13.4
are related to the method of analysis, as opposed to the actual data structure.
The implied analysis features ECD patient-specific comparison groups and,
within a given matched set, the handling of removals and non-ECD transplants
seems clear cut.

The sequential stratification method was motivated by such considera-
tions, in the context of kidney (Schaubel et al., 2006) and liver transplantation
(Schaubel et al., 2009). In essence, this method reorganizes the observed data,
then replicates the analysis described above for the ideal experiment. To for-
malize the ideas, suppose that subject j receives an ECD transplant at time
Tj . Patient i (where i 6= j) is eligible to be matched to patient j if i is alive and
has not been transplanted prior to time Tj (i.e., min(Ti, Ci, Di, Ri) > Tj) and
si = sj , where s denotes the matching criteria, which we assume are known
at t = 0. For example, in our application, age and organ donation service
area (the geographic region to which a wait list is intended to apply) served
as matching criteria. Thus, we find a set of patients “at risk,” denoted by
Aj , which comprises patient j as well as those patients who are matched to
patient j at time Tj . We refer to Aj as a matched set of patients, or stratum.
The outcomes of patient j are compared to the outcomes of patients i 6= j in
this set. This could be done by assuming a Cox type model

λji(t) = λ0j(t) exp(θ1ECDji + θ>0 Zi), t > Tj (13.3)
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TABLE 13.3: Analysis of SRTR data: Results from sequential stratification
Model (13.3).

Model Contrast Hazard Ratio (95% CI)
(13.3) ECD vs. .78 (.75, .81)

Conventional Therapy

for each patient i in Aj , where ECDji takes the value 1 if i = j, the ECD
recipient, and takes the value 0 otherwise. Note that the covariate vector Zi
would typically not contain elements used as matching criteria. The sequential
stratification method handles both removal and non-ECD transplants appro-
priately; each is an entry criterion but not a censoring criterion for a given
matched set.

A pictorial representation of sequential stratification can be obtained by
referring to Figure 13.2. Here, i = 1 receives an ECD kidney transplant.
Patient i = 2 is excluded as a match due to prior (non-ECD) transplantation
(i.e., T2 < T1), while patient i = 5 was already removed by the time that i = 1
received an ECD (R5 < T1). Thus A1 = {1, 3, 4, 6} is the set of patients who
were alive and had not been removed or transplanted as of T1. In terms of
post-matching follow-up, patient i = 3 is not censored at T3, since receipt of a
non-ECD transplant is a possible sequelae of foregoing ECD transplantation.
Analogously, patient i = 6 is not censored from the matched set at R6. Note
that patient i = 4 would be censored from A1, at the time of receiving an
ECD kidney, since such receipt does not fall under the rubric of conventional
therapy, and would be deemed a cross-over to the experimental treatment. In
fact, T4 would generate another stratum, A4 = {3, 4, 6}.

Results from the sequential stratification analysis are presented in Ta-
ble 13.3. This more complete analysis demonstrates that ECD kidney trans-
plantation is associated with a significant 22% reduction in mortality relative
to conventional therapy, with exp(θ̂1) = .78 and p < .0001.

13.6 Discussion

In this chapter, we contrast different methods of quantifying the effect of ex-
panded criteria donor (ECD) kidney transplantation with conventional ther-
apy, for which a person stays on the wait list until they are offered a non-ECD
kidney, are de-listed, or die. There are different ways of defining a treatment
effect, and the one of interest in this chapter is the effect-of-treatment-on-the-
treated (Pearl, 2000), for which one aims to compare the outcomes for treated
subjects against those which would have been observed (for the treated sub-
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jects) in the absence of treatment. The scientific question is not well addressed
by standard time-dependent survival analysis methods, which do not accom-
modate some important elements of the data structure. Sequential stratifica-
tion, the method we advocate in this setting, involves reorganizing the ob-
served data in a manner more in line with the research question. Aspects of
the data, which are difficult to address appropriately through standard meth-
ods, can then be dealt with in a transparent and straightforward manner.
The method has been used in several analyses targeting the benefit of liver or
kidney transplantation; see, e.g., Miles et al. (2007), Schaubel et al. (2008),
Lucey et al. (2009), Sharma et al. (2009), Englesbe et al. (2010), and Snoeijs
et al. (2010).

A standard method of accommodating a time-dependent treatment in the
survival analysis setting is through Cox regression with a time-dependent
treatment indicator. Although this approach is suitable for some data struc-
tures, its use will generally be problematic when other time-dependent pro-
cesses are at work. In the ECD setting, both the receipt of a non-ECD trans-
plant and removal from the wait list are time-dependent processes that are
important in comparing ECD transplantation to conventional treatment with-
out the ECD option. However, such processes must be handled correctly for
the model to be consistent with the particular research question. In other
cases, the concomitant time-dependent process may be a covariate observed
longitudinally which affects both treatment assignment and the death hazard.
Sequential stratification can also be applied to this setting.

The evaluation of time-dependent treatments has received considerable at-
tention in the survival analysis literature in the last 10–15 years. In particular,
marginal structural models (MSMs) have gained much popularity in the past
decade; see, e.g., Hernán et al. (2000), Robins et al. (2000), and Hernán et al.
(2001). The treatment effects estimated through sequential stratification and
MSMs are fundamentally different, as described by Schaubel et al. (2009) and
Kennedy et al. (2010). The MSM leads to an average treatment effect, where
the average is essentially taken across all patients and all possible treatment
times. The MSM estimates what is known in the literature as the average
causal effect, where this term has come to mean contrasting a scenario in
which all patients are treated versus one in which none are treated. As noted
in the previous paragraph, however, the treatment effect targeted by sequential
stratification is similar to the effect-of-treatment-among-the-treated. Rather
than averaging over all patients (treated or not) as would be the case in an
MSM, sequential stratification implicitly averages over the patients observed
to be treated with ECD and makes no effort toward inference on what would
have been the treatment experience for untreated patients. The matching of
similar subjects is an attempt to represent what would have been the outcomes
of the treated subjects if (contrary to fact) they were untreated.

In the sequential stratification method, a patient selected as a match is
censored upon receipt of an ECD transplant; that is, the time to death in the
conventional therapy group is censored. Such cross-overs to the experimental
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group generally constitute dependent censoring, which necessitates a variant
of Inverse Probability of Censoring Weighting; see, e.g., Robins and Rotnitzky
(1992). This was explored in detail and implemented by Schaubel et al. (2009)
in the context of liver transplantation, where such cross-overs were relatively
common. Among end-stage renal disease patients, ECD kidney transplanta-
tion is sufficiently rare that bias due to cross-overs to the ECD group among
matched patients would be expected to be small.

Since the model assumed in sequential stratification is a Cox-type model,
its assumptions are analogous to those in the standard use of a Cox model. Of
greatest concern would be the assumption of treatment and adjustment covari-
ate effects that are constant throughout follow-up time. The evaluation of this
assumption can be accomplished by extending the model to incorporate inter-
actions between the treatments or covariates and time and appropriate tests
carried out; such extensions also can be used to describe more complicated
treatment effects than a constant relative risk as discussed in Kalbfleisch and
Prentice (2002). When treatment is assigned at baseline, Wei and Schaubel
(2008) proposed a method that (like the baseline hazard for the Cox model) as-
sumes no particular functional form for the treatment effect; see also Schaubel
and Wei (2011). More recently, Li et al. (2013) proposed matching methods
to contrast survival functions when treatment assignment is time-dependent.
On a related note, methods developed by Gong (2012) measure the treat-
ment effect in terms of either the difference in survival function, or the area
between the survival curves. The work of Gong (2012) requires more model-
ing assumptions than Li et al. (2013), but allows for more complicated data
structures.

It is likely that the survival benefit of ECD transplantation depends on
several patient characteristics. For instance, older patients, or patients with
diabetes, may have more to gain (relative to conventional therapy) through
ECD transplantation, since their prognosis on the wait list is less favorable. In
addition, ECD transplantation may be a better option for patients in regions
of the country that typically have longer wait lists. Each of these directions
would be a useful topic of further investigation.
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