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ABSTRACT  
 
In this paper, we summarize the EBLUP and pseudo-EBLUP estimators for small area estimation under a basic unit level model 

and the EBLUP estimators under the Fay-Herriot area level model. In particular, we are interested in the confidence interval 

coverage of the EBLUP and pseudo-EBLUP estimates. We conducted a design-based simulation study to compare the model-

based estimates for unit level and area level models. We also compared the estimates under certain model misspecification. Our 

results have shown that unit level model performs better than the area level model under correct modeling, and pseudo-EBLUP 

estimator is the best among unit level and area level estimators.  

 

KEY WORDS:  Benchmarking, Design consistent, Nested error regression model, MSE, Survey weight.  

 

RÉSUMÉ  
 
Dans cet article, nous résumons les estimateurs « EBLUP » et « pseudo- EBLUP «  pour l'estimation des  petits domaines en 

supposant  un modèle au niveau de l’unité et les estimateurs EBLUP  dans le cadre du modèle de Fay-Herriot. En particulier, 

nous nous intéressons à la couverture de l’intervalle de confiance des estimations du l’EBLUP ainsi que du pseudo- EBLUP. 

Nous avons mené une étude de simulation basé sur un plan de sondage afin  comparer les estimations fondées sur un modèle au 

niveau de l'unité ainsi qu’au au niveau de la région. Nous avons également comparé les estimations selon de  mauvaises 

spécifications du modèle. Nos résultats ont démontré que le modèle  au niveau de l'unité est plus performant que celui au niveau 

de la région en supposant que le modèle est juste. Aussi, l’estimateur pseudo- EBLUP  est le meilleur parmi ceux au niveau de 

l'unité ainsi que ceux au niveau de la  de la région. 

 
MOTS CLÉS: Calage; consistent au niveau du plan de sondage modèle de régression emboitée, EQM, Poids de sondage) 

 

1. INTRODUCTION 

 

Small area estimation is carried out using models that can be classified into two broad types: (i) Aggregate level (or area 

level) models that relate the small area means to area-specific auxiliary variables. ii) Unit (element) level models that 

relate the unit values of the study variable to unit-specific auxiliary variables. Area level models will be used if unit level 

data are not available. The common model that drives these procedures is the General Linear Mixed Model (GLMM) 

given by y = X β+ Zv + e, where y is the n x 1 vector of sample observations, X and Z are known n x p and n x h matrices 

of full rank, and v and e are independently distributed.  

 

The survey design can be incorporated into these broad types in different ways. In the case of area level, the survey 

variance of the associated direct estimator is introduced into the model via the design-induced errors e in the GLMM. In 

the case of the unit level, the observations can be weighted with the survey weight.  A number of factors affect the success 

of using these estimators. Two important factors are whether the assumed model is correct and whether the variable of 

interest is correlated with the selection probabilities associated with the sampling process (informativeness).  In this paper, 

we compare, via simulation,  the impact of model misspecification and informativeness for these two basic procedures in 

terms of bias, estimated mean squared error and coverage.  

 

The paper is structured as follows. The point and associated estimated mean squared errors for the unit level and area 

models are described in sections 2 and 3 respectively. The description of the simulation and results are given in section 4.  

This simulation computes the point and associated mean squared errors for a ppswr sampling scheme for the following 

two conditions: a. the model is correct or incorrect; and b. Design informativeness varies from insignificant to very 

significant. Finally, conclusions resulting from this work are discussed in Section 5. 
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2. UNIT LEVEL MODEL 
 

A basic unit level model for small area estimation is the nested error regression model (Battese, Harter and Fuller, 1988) 

give as ,    1,..., , 1,..., ,ij ij i ij iy v e j N i m    x  where ijy  is the variable of interest for the j-th population unit in the i-

th small area, 1( ,..., )ij ij ijpx x x  with 1 1ijx   is a 1p  vector of auxiliary variables associated with ijy , 

0 1( ,..., )p  
β  is a 1p  vector of regression parameters, and iN  is the number of population units in the i-th small 

area. The random effects iv  are assumed to be iid 
2(0, )vN   and independent of the unit errors ije , which are assumed to 

be iid 
2(0, )eN  . The parameter of interest is the mean for the i-th area, iY , which may be approximated by  

                                                                                         i i iv  X β ,                                                                               (1) 

assuming that iN  is large, where iX  is the vector of known population means of the ijx  for the i-th area, that is, 

1
/iN

i ij ij
N


X x . We assume that samples are drawn independently across small areas according to a specified sampling 

design. The sample data { , , , 1,..., ; 1,..., }ij ij ij iy x w j n i m   is assumed to obey the population model, i.e.  

                                                            ,    1,..., , 1,..., ,ij ij i ij iy v e j n i m    x β                                                        (2) 

where ijw~  is the basic design weight associated with unit ijy , and in  is the sample size in the i-th small area.  

 

2.1 EBLUP Estimation 
 

The best linear unbiased prediction (BLUP) estimator of small area mean i ii iv  X β  based on the nested error 

regression model (2) is given by  

                                                                              ( )i i i i i ir y r   X x β ,                                                                         (3) 

where 
1

/in
i ij ij

y y n


 , 
1

/in
i ij ij

n


x x , 
2 2 2/ ( / )i v v e ir n    , and β  is given by 

                                                       

1

1 1 2 2

1 1

( , )
m m

i i i i i i e v
i i

y  



 

 

        
   
 β x V x x V β ,                                                      (4) 

where 1( ,..., )
ii i inx x x , 

2 2

i i ii e n v n n   V I 1 1 , 1( ,..., )
ii i iny y y  , 1,...,i m . Both i  and β  depend on the unknown 

variance parameters 
2
e  and

2
v . We use the method of fitting constant to estimate 

2
e  and

2
v , and the estimators are 

given as  

                                                                    
12 2

1 1

ˆˆ 1
inm

e ij
i j

n m p 


 

     ,                                                 

and 
2 2ˆ max( ,0)v v  , where 

2
v  is given by  

                                                                  2 1 2 2
*

1 1

ˆ ˆ( )
inm

v ij e
i j

n u n p 

 

 
   

 
 ,                                              

where 
1 2

* 1
[( ) ]

m
i i ii

n n tr n


   X X x x , 1( ,..., )mx x  X . Furthermore, }ˆ{ ij  are residuals from the ordinary least 

squares (OLS) regression of ij iy y  on 1 1{ ,..., }ij i ijp i p  x x x x  and }ˆ{ iju  are the residuals from the OLS regression of 

ijy  on },...,{ 1 ijpij xx . See Rao (2003), page 138 for more details.  

 

Replacing 
2
e  and 

2
v  by estimators 

2ˆe  and 
2ˆv , we obtain the EBLUP estimator of small area mean i  as  

                                                                              ˆ ˆˆ( )i i i i i ir y r   X x β   ,                                                                       (5) 

where 
2 2 2ˆ ˆ ˆ ˆ/ ( / )i v v e ir n     and 

2 2ˆ ˆ ˆ( , )e v β β . The mean squared error (MSE) of the EBLUP estimator i̂  is given as 

2 2 2 2 2 2
1 2 3

ˆ( ) ( , ) ( , ) ( , ),i i e v i e v i e vMSE g g g         see Prasad and Rao (1990). The g-terms are
2 2 2

1 ( , ) (1 )i e v i vg r    ,
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2 2 1 1
2 1

( , ) ( ) ( ) ( )
m

i e v i i i i i i i i ii
g r r   


   X x x V x X x  and

2 2 2 2 2 1 3 2 2
3 ( , ) ( ) ( , )i e v i v e i e vg n n h         . Here, 

2 2( , )e vh   is 

2 2 4 2 2 2 2 2 4 2ˆ ˆ( , ) ( ) 2 cov( , ) ( )e v e v e v e v v eh V V            . The variances and covariance of 
2ˆe  and 

2
v  are given as 

following terms: 
2 1 4ˆ( ) 2( 1)e eV n m p     , 

2 2 1 4 2 2 4
* * **( ) 2 [( 1) ( 1)( ) 2 ]v e e v vV n n m p m n p n n             , and 

2 2 1 2
*ˆ ˆcov( , ) ( 1) ( )e v em n V     , where 

1 2
* 1

[( ) ]
m

i i ii
n n tr X X n


    x x , 

2
** ( )n tr  Z MZ ,

 
( )n    -1

M I X X X X , 

1
( ,..., )

mn ndiagZ 1 1 . A second-order unbiased estimator of the MSE is obtained by Prasad and Rao (1990) as 

                                                       
2 2 2 2 2 2

1 2 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( , ) ( , ) 2 ( , )i i e v i e v i e vmse g g g         .                                                    (6) 

Note that the EBLUP estimator ˆ
i  given by (5) depends on the unit level model (2) is generally not design consistent. If 

the model (2) does not hold for the sampled data, then the EBLUP estimator ˆ
i  may lead to biased estimates.  

2.2 Pseudo-EBLUP Estimation 
 

You and Rao (2002) proposed a pseudo-EBLUP estimator of the small area mean i  by combining the survey weights 

and the unit level model (2) to achieve design consistency. Let ijw  be the weights associated with each observation unit

ijy . A direct design-based estimator of the small area mean is given by  

                                                                   
1

11

i
i

i

n
n

ij ijj
iw ij ijn

jijj

w y
y w y

w





 





,                                                                   (7) 

where 
1

/ /in
ij ij ij ij ij

w w w w w 
   and 

1
1in

ijj
w


 . By combining the direct estimator (7) and the unit level model (2), 

we can obtain the following aggregated (survey-weighted) area level model:   

                                                               ,    1,..., ,iw iw i iwy v e i m   x β                                                                (8) 

where 
1

in
iw ij ijj

e w e


  with ( ) 0iwE e   and 2 2 2
1

( ) in
iw e ij ij

V e w 


  , and 
1

in
iw ij ijj

w


x x . Note that the regression 

parameter β and the variance components 
2
e  and 

2
v  are unknown in model (8). Based on model (8), assuming that the 

parameters
 
β , 

2
e  and 

2
v  are known, we can obtain the BLUP estimator of i  as 

                                                           
2 2( ) ( , , )iw iw iw i iw iw iw e vr y r      X x β β ,                                                         (9) 

where 
2 2 2/ ( )iw v v ir     . The BLUP estimator iw  depends on β , 

2
e  and 

2
v . To estimate the regression parameter, 

You and Rao (2002) proposed a weighted estimation equation approach, and obtained an estimator as follows:  

                                    

1

2 2

1 1 1 1

( ) ( ) ( , )
i in nm m

w ij ij ij iw iw ij ij iw iw ij w e v
i j i j

w r w r y  



   

   
      

   
 β x x x x x β .                              (10) 

Note that 
2 2ˆ ( , )w w e v β β  depends on 

2
e  and 

2
v  . Replacing 

2
e  and 

2
v  in (10) by the fitting of constant estimators 

2ˆe  and 
2ˆv , we can obtain 

2 2ˆ ˆ ˆ( , )w w e v β β . See Rao (2003, page 149).  

 

Now replacing β , 
2
e  and 

2
v  in (9) by ˆ

wβ , 
2ˆe  and 

2ˆv , we obtain  the pseudo-EBLUP estimator for the small area 

mean i :   

ˆ ˆˆ ˆ( )iw iw iw i iw iw wr y r   X x β .  

Note that iw̂  is design-consistent as the sample size in  becomes large. Also, iw̂  has a nice self-benchmarking property 

assuming that the weights ijw~  are calibrated to agree with the known population total, that is, if  
1

in
ij ij

w N


 , then 

1
ˆm

i iwi
N 

  equals the direct regression estimator of the overall total, that is,  

1
ˆ ˆˆ ˆ( )

m
i iw w w wi

N Y


   X X β , 

where 
1 1

ˆ im n
w ij iji j

Y w y
 

  , and 
1 1

ˆ im n
w ij iji j

w
 

 X x . For more details, see You and Rao (2002).  
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The MSE of ˆ
iw is given as  

2 2 2 2 2 2
1 2 3

ˆ( ) ( , ) ( , ) ( , )iw iw e v iw e v iw e vMSE g g g         , 

where
2 2 2

1 ( , ) (1 )iw e v iw vg r    , 
2 2

2 ( , ) ( ) ( )iw e v i iw iw w i iw iwg X r x X r x      , and w  is given as  

1 1 2 1 1 2

1 1 1 1 1 1 1 1 1 1 1 1 1

( ) ( )[( ) ]  ( ) [ ( )( ) ][( ) ] ,
i i i i i i in n n n n n nm m m m m m

w ij ij ij ij ij ij e ij ij ij ij ij ij v
i j i j i j i j i j j i j

z x    

            

              x z z x z x z z z z  

and ( )ij ij ij iw iww r z x x ,  2 2 2 4 2 2 2
3 ( , ) (1 ) ,iw e v iw iw e v e vg r r h        , where ),( 22

veh   is the same function as in the 

MSE for the EBLUP estimator.  A nearly second-order unbiased estimator of the MSE can be obtained as  

                                              )ˆ,ˆ(2)ˆ,ˆ()ˆ,ˆ()ˆ( 22
3

22
2

22
1 veiwveiwveiwiw gggmse   .                                 (11) 

See Rao (2003, page 150) and You and Rao (2002, page 435). Note that this MSE estimator (11) ignores the cross-product 

terms. However, the cross-product terms are relatively small; see Torabi and Rao (2010) for details.  

 

Note that the pseudo-EBLUP estimator ˆ
iw  is slightly less efficient than the EBLUP estimator ˆ

i , but the pseudo-EBLUP 

estimator is design consistent and will be more robust against model misspecification. We will compare the performance 

of the EBLUP and pseudo-EBLUP estimators through a simulation study.  

 

3. AREA LEVEL MODEL 
 

The Fay-Herriot model (Fay and Herriot, 1979) is a basic area level model widely used in small area estimation to 

improve the direct survey estimates. The Fay-Herriot model basically has two components, namely, a sampling model for 

the direct survey estimates and a linking model for the small area parameters of interest. The sampling model assumes that 

given the area-specific sample size in >1, there exists a direct survey estimator iy , which is usually design unbiased, for 

the small area parameter i  such that 

                                                                          ,  1,...,i i iy e i m   ,                                                                  (12) 

where the ie  is the sampling error associated with the direct estimator iy  and m is the number of small areas.  It is 

customary in practice to assume that the ie ’s are independently normal random variables with mean  ( ) 0i iE e    and 

sampling variance 2var( )i i ie   .  To obtain the linking model we assume that the small area parameter of interest i  is 

related to area level auxiliary variables 1( ,..., ) 'i i ipx xx  through a linear regression model  

                                       ,  1,...,i i iv i m   x β ,                                    (13) 

where 1( ,..., ) 'p β  is a p × 1 vector of regression coefficients, and the iv ’s are area-specific random effects assumed 

to be independent and identically distributed (iid) with E( iv ) = 0 and var( iv ) = 
2
v .  The assumption of normality is 

generally also included, even though it is more difficult to justify the assumption. The model variance 
2
v  is unknown 

and needs to be estimated from the data. The area level random effects iv  capture the unstructured heterogeneity among 

areas that are not explained by the sampling variances. Combining models (12) and (13) lead to a linear mixed area level 

model given as  

                                                                            i i i iy v e  x β ,                                                                     (14) 

Model (14) involves both design-based random errors ie  and model-based random effects iv . For the Fay-Herriot model, 

the sampling variance 
2
i  is assumed to be known in model (14). This is a very strong assumption. Generally smoothed 

estimators of the sampling variances are used in the Fay-Herriot model and then treated as known. However, if direct 

estimates of sampling variances are used in the Fay-Herriot, then an extra term is added to the MSE estimator to account 

for the extra variation (Wang and Fuller, 2003).  

 

Assuming the model variance 
2

v  is known, the best linear unbiased predictor (BLUP) of the small area parameter i  can 

be obtained as                                                                          
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 (1 )i i i i i WLSy      x β ,                                                                      (15) 

where 
2 2 2/ ( )i v v i     , and  WLSβ  is the weighted least squared (WLS)  estimator of  β  given as  

1 1

2 2 1 2 2 1

1 1 1 1

( ) ( )
m m m m

WLS i v i i i v i i i i i i i i
i i i i

y y     

 

 

   

                  
       
   β x x x x x x . 

To estimate the unknown model variance
2

v , there are several methods available; see You (2010) for a review. We 

consider the restricted maximum likelihood (REML) method. The REML method is derived by Cressie (1992) to estimate 

the model variance under the Fay-Herriot model. By using the scoring algorithm, the REML estimator 
2ˆv  is obtained as 

follows (Cressie, 1992; Rao, 2003):  
1

2( 1) 2( ) 2( ) 2( )( ) ( )k k k k
v v R v R vI S   


   

 
, for 1,2,...k  , 

where  2 1
( ) tr

2
R vI   PP , and  2 1 1

( ) tr
2 2

R vS   y PPy P , and 
1 1 1 1 1      P V V X(X V X) X V . Note that we can 

simply use a guess value as the starting value for
2(1)
v . The algorithm should converge very fast.   

 

Replacing 
2
v  in equation (15) by the REML estimator

2ˆv , we can obtain the EBLUP of the small area parameter i  

based on the Fay-Herriot model as  

ˆ ˆˆ ˆ(1 )FH
i i i i i WLSy      x β , 

where 
2 2 2ˆ ˆ ˆ/ ( )i v v i     . As in the unit level model, and from Prasad and Rao (1990) and Rao (2003), we can obtain the 

MSE estimator of ˆFH
i  as follows:  

1 2 3
ˆ( ) 2FH
i i i imse g g g    , 

where ig1  is the leading term given as 
2

1
ˆ

i i ig   , ig 2  accounts for the variability due to estimation of the regression 

parameter  , and is given by 

1

2 2 2
2

1

ˆˆ ˆ ˆˆ(1 ) ( ) (1 )
m

i i i WLS i v i i i i i i
i

g Var   





 
       

 
x β x x x x x . 

The term ig3  is due to the estimation of the model variance and given as
2 2 2 2 3 2

3 ˆ ˆ( ) ( ) ( )i i v i vg V     , where 
2ˆ( )vV   is 

the asymptotic variance of the REML estimator 
2ˆv  obtained by Datta and Lahiri (2000) given by

2 2 2 2 1
1

ˆ ˆ( ) 2( ( ) )
m

v v ii
V     


   .  

 

In the above discussions, the sampling variance 
2
i  is assumed to be known in the Fay-Herriot model (14). This is very 

strong assumption. Usually a direct survey estimator, say
2

is , of the sampling variance 
2
i  is available. The direct 

sampling variance estimates are smoothed as 
2~

is  by using external models and generalized variance functions. The 

smoothed sampling variance estimates 
2~

is  are used in the Fay-Herriot model and treated as known.  Rivest and Vandal 

(2003) and Wang and Fuller (2003) considered the small area estimation using the Fay-Herriot model with the direct 

sampling variance estimates 
2

is  under the assumption that the estimators 
2

is  are independent of the direct survey 

estimators iy  and 
2

iisd ~
2 2

ii d  , where 1 ii nd  and in  is the sample size for the i-th
 
area.  When the direct sampling 

variance estimate 
2

is  is used in the place of the true sampling variance
2
i , an extra term accounts for the uncertainty of 

using 
2

is  is needed in the MSE estimator, and this term, denoted as ig 4 , is given as  

4 4

4 2 2 3

ˆ4

1 ˆ( )

v i
i

i v i

s
g

n s






 
; 

see Rivest and Vandal (2003) and Wang and Fuller (2003) for details.  
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We will conduct a simulation study to compare the Fay-Herriot model with the unit level model, particularly the bias and 

confidence interval of the model-based estimates.  

 

4. SIMULATION STUDY 
 

4.1 Data Generation 

 

We created two finite populations. Each finite population had 30m   areas, and each area consisted of 200iN   

population units. The first finite population was generated from the unit level model 0 1 1ij ij i ijy x v e      by taking 

0 50  , 1 10  , 
2~ (0, )i vv N  , 

2~ (0, )ij ee N  , where 
2 225e   and 

2 100v  . The auxiliary variable 1ijx  was 

generated from an exponential distribution with mean 4 and variance 8. The second population was generated from the 

same model but with different fixed effects values: 0 50  , 1 10   for areas 1,...,10m  ;  0 75  , 1 15   for areas 

11,...,20m  ; 0 100  , 1 20   for areas 21,...,30m . Therefore, in the second population, we had three different 

means for the fixed effects 0 1 1ijx  . From the constructed populations, PPSWR (probability proportional to size with 

replacement) samples within each area were drawn independently. To implement PPSWR sampling, we defined a size 

measure ijz  for each ijy . Using these ijz  values, we computed selection probabilities /ij ij ijj
p z z   for each unit ijy  

and used them to select PPSWR samples of equal size, nni  , within each group, by taking n = 10 and 30,  respectively. 

The basic design weights are given by 1 1
ij i ijw n p   so that 1 1/ij ij ijj

w p p   . We chose the size measure ijz  in a way 

such that the correlation coefficient between ijy  and selection probability ijp  within each group varied between 0.01 to 

0.95, that corresponds to non-informative selection to strongly informative selection of PPSWR samples.  

 

4.2 Model Fitting 

 

For unit level modeling, we fitted the nested error regression model to the PPSWR sampling data generated from the 

population. We then obtained the corresponding EBLUP and pseudo-EBLUP estimates and related confidence interval 

coverage estimates. For the area level Fay-Herriot model, we first constructed three area level direct estimates and the 

corresponding sampling variance estimates using the selected PPS samples. Table 1 presents these estimates. Then we 

used these area level estimates as input values and fit the area level Fay-Herriot model, and obtained three area level 

model-based estimates correspondingly denoted as: FH-SRS, FH-HT, and FH-HA. Note that the SRS direct estimator 

ignored the sample design and should perform poorly if the sample design is informative. The weighted Hájek estimator is 

also used in the pseudo-EBLUP estimator for the unit level model.  

 

Table 1: Areal level direct estimator and sampling variances 

 Point estimator Sampling variance estimator 

 

Direct mean (SRS) 
1

1ˆ
in

SRS
i ij

ji

y
n




    
2

1

1ˆ ˆvar( )
1

in
SRS SRS
i ij i

ji

y
n

 


 

  

 

Horvitz-Thompson (HT) 

estimator 1 1

1 1ˆ
i in n

ijHT
i ij ij

j ji i i ij

y
w y

N N n p


 

    
2

2
1

1ˆ ˆvar( )
( 1)

in
ijHT HT

i i i
j iji i i

y
N

pN n n
 



 
  

   
  

 

Weighted Hájek (HA) 

estimator 

1

11

1ˆ
ˆ

i
i

i

n
n

ij ijj ijHA
i n

j i ijiijj

w y y

n pNw






 



  

2

2
1

ˆ1ˆvar( )
ˆ ( 1)

i
HAn

ij iHA
i

j iji i i

y

pN n n






 
 
   

  

 

For both unit level and area level model fitting, we had the following two scenarios: Scenario (I): correct modeling, where 

the data is generated from the first population and the fitting models were unit level model (2) and area level model (14) 

with common 0  and 1 . Scenario (II): incorrect modeling, where the data is generated from the second population with 

different means for the fixed effects, and the fitting models were the same as in Scenario (I) with common 0  and 1 . 

 

 



 7 

4.3 Results 

 

We first compared the means and standard errors of the unit level and area level estimates under Scenario I: correct 

modeling. Figure 1 presents the comparison of unit and area level estimates with the population means when the PPSWR 

sampling procedure is informative (correlation coefficient between ijy  and the selection probability ijp  is 0.8).  

 

Figure 1: Comparison of means under Scenario I: correct modeling 

 

 
 

It is clear that for correct modeling, both EBLUP and pseudo-EBLUP lead to unbiased estimates. FH-SRS severely 

overestimates the means, and both FH-HT and FH-HA lead to reasonable estimates, but FH-HT has larger bias than FH-

HA. Figure 2 presents the comparison of standard errors for both unit and area level estimators under correct modeling.  

EBLUP and pseudo-EBLUP have much smaller standard errors than the FH area level estimates. EBLUP has the smallest 

standard errors and pseudo-EBLUP has slightly larger standard errors. FH-HT and FH-HA perform similarly, but FH-HA 

has less variation than FH-HT. FH-SRS performs poorly as expected under informative sampling. 

 

Figure 2: Comparison of standard errors of model-based estimators under Scenario I: correct modeling 

 
 

We now compare the estimates under scenario II: incorrect modeling. Figure 3 compares the means. It is clear that 

pseudo-EBLUP is better than EBLUP under incorrect modeling. EBLUP leads to severe bias. Both the FH-HT and FH-
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HA perform very well, and FH-SRS performs poorly with large bias. Figure 3 shows that using survey weights in the 

modeling is very important when the unit level model is incorrectly specified.  

 

Figure 3: Comparison of means under Scenario II: incorrect modeling 

 

 
 

For standard errors, from Figure 4 the pseudo-EBLUP performs the best under incorrect modeling. EBLUP has very large 

standard errors in model misspecification part. Again FH-HT and FH-HA perform similarly, and FH-SRS performs 

poorly. Thus pseudo-EBLUP performs the best in terms of standard errors under model misspecification.  

 

Figure 4: Comparison of standard errors of model-based estimators under Scenario II: incorrect modeling 

 
 

We now compare the confidence intervals. Figure 5 compares the confidence interval coverage rates under scenario I: 

correct modeling. The correlation between the selection probabilities and sampling units is presented as well to show the 

strength of informativeness of the PPS sampling. Figure 5 shows that, when the model is correct, the coverage rates for 

EBLUP, pseudo-EBLUP, FH-HT and FH-HA are quite stable under both informative and non-informative sampling, FH-

HT has slightly lower coverage rate when the sampling is non-informative, whereas the coverage rate for FH-SRS is very 

poor (only about 25%) under informative sampling and increases to 95% under non-informative sampling.  
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Figure 5: Comparison of confidence intervals under Scenario I: correct modeling 

 

 
 

Figure 6 presents the coverage rates under scenario II: incorrect modeling. Figure 6 shows that the EBLUP has poor 

coverage rate (as low as 62%) under informative sampling, whereas the pseudo-EBLUP has very table and high coverage 

rates (all around 95%) under both the informative and non-informative sampling. For the FH estimators, FH-HT and FH-

HA again perform well and have stable and high coverage rates, especially for the FH-HA. FH-HT has slightly lower 

coverage rate when the sampling is very non-informative. As expected, FH-SRS performs poorly when the sampling is 

informative  

 

Figure 6: Comparison of confidence intervals under Scenario II: incorrect modeling 
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5. CONCLUSION  
 

In this paper, we have compared the performance of the estimators based on the unit level nested error regression model 

and the area level Fay-Herriot model through a design-based simulation study. Overall the Pseudo-EBLUP estimator 

performs the best in terms of bias and coverage rate under both the informative and non-informative sampling. In practice, 

we suggest to construct the pseudo-EBLUP estimators using the survey weights and unit level observations. For area level 

models, FH-HA performs better than FH-HT. FH-SRS performs poorly. Thus we suggest to construct the weighted HA 

estimators and then apply the Fay-Herriot model to obtain the corresponding model-based estimators.  
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