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ABSTRACT 

 

David Binder’s pioneering 1983 paper published in the International Statistical Review provided a unified linearization approach to 

variance estimation from complex survey data. This important paper stimulated much new research on linearization variance estimation 

in subsequent years. This talk will review some of that work, including the alternative linearization method of Demnati and Rao (2004, 

2010). We apply our approach to the estimation of total variance of calibration estimators of the generalized linear models parameters 

when missing items have been imputed using either deterministic or random imputation.  

 

KEY WORDS: Best linear predictor; Finite population parameters; Imputation; Item nonresponse; Model parameters; Multiple weight 

adjustments. 

 

RÉSUMÉ 

 

L’article novateur de David Binder publié en 1983 dans le International Statistical Review a présenté une approche unifiée de 

l’estimation de la variance par linéarisation à partir de données d’enquête complexes. Cet article important a fait souffler un vent nouveau 

sur la recherche sur l’estimation de la variance par linéarisation dans les années qui ont suivi. Nous passerons en revue certains de ces 

travaux, y compris la méthode de rechange par la linéarisation de Demnati et Rao (2004, 2010). Nous appliquons notre approche à 

l’estimation de la variance totale des estimateurs par calage pour les paramètres des modèles linéaires généralisées lorsque les réponses 

manquantes ont été imputées de façon déterministe ou aléatoire.  

 

MOTS CLÉS: Meilleur prédicteur linéaire; paramètres de population finie; imputation; non-réponse partielle; paramètres du modèle; 

ajustements multiple de poids. 

 

1. INTRODUCTION 

 

Traditionally, statistical agencies collect data to estimate relatively simple finite population quantities such as totals or means. 

Estimators and associated variance estimators for such parameters are well studied in the literature. Currently, survey data are 

also used to investigate relationships between variables using statistical models, such as linear and logistic regression models, 

and interest is in the estimation of the model parameters and associated variance estimators.  

 

Using Taylor series linearization approach, Binder (1983) presented a unified method of estimating the design-based variance 

of estimators of “census” model parameters based on complex sample designs from finite populations. This method is 
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particularly useful when the parameters are defined implicitly as solutions to estimating equations. Taylor linearization is 

generally applicable to any sampling design that permits unbiased variance estimation for linear estimators. However, it can 

lead to multiple variance estimators that are asymptotically design unbiased under repeated sampling. The choice among the 

variance estimators, therefore, requires other considerations such as (i) approximate unbiasedness for the model variance of 

the estimator under an assumed model, (ii) validity under a conditional repeated sampling framework. For example, in the 

context of simple random sampling and the ratio estimator, XxyYR )/(ˆ  , of the population total Y , Royall and Cumberland 

(1981) showed that a commonly used linearization variance estimator, 2112 )( zLI sNnN   , does not track the conditional 

variance of 
RŶ  given x , unlike the jackknife variance estimator 

J . Here y  and x  are the sample means, X  is the known 

population total of the auxiliary variable x , 2

zs  is the sample variance of the residuals 
kkk xxyyz )/(  and n  denotes the 

sample size. By linearizing the jackknife variance estimator, 
J , a different linearization variance estimator, LIJL xX  2)/( , 

is obtained. This variance estimator also tracks the conditional variance as well as the unconditional variance, where 

NXX /  is the mean of x . As a result, 
JL  or 

J  may be preferred over 
LI . Särndal, Swensson and Wretman (1989) 

showed that 
JL  is both asymptotically design unbiased and asymptotically model unbiased in the sense of )ˆ()( RmJLm YVarE  , 

where )ˆ( Rm YVar  is the model variance of 
RŶ  under a “ratio model”: 

kkm xyE )( ; Nk ,...,1  and the 
ky ’s are independent with 

model variance 
kkm xyVar 2)(  , 02 >  . Thus, 

JL  is a good choice from either the design-based or the model-based 

perspective. Binder (1996) presented an elegant “cookbook” approach to Taylor linearization that leads directly to 
JL -type 

linearization variance estimators. He applied the method to smooth functions of estimated totals, )ˆ,...,ˆ( 1 mYYg , generalized 

regression estimators and the Wilcoxon rank sum statistic.  

 

Demnati and Rao (2004) proposed an alternative Taylor linearization approach to variance estimation that is theoretically 

justifiable and at the same time leads directly to a 
JL -type variance estimator for general designs. They applied the method 

under the design based approach to a variety of problems, covering regression calibration estimators of a total Y  and other 

estimators defined either explicitly or implicitly as solutions of estimating equations.  They obtained a new variance estimator 

for a general class of calibration estimators that includes generalized raking ratio and generalized regression estimators. They 

also extended the method to two-phase sampling and obtained a sampling variance estimator that makes fuller use of the first 

phase sample data compared to traditional linearization variance estimators.  Demnati and Rao (2010) studied total variance 

estimation in the context of finite populations assumed to be generated from superpopulation models and analytical 

inferences on model parameters are of interest. If the sampling fractions are negligible, then the sampling variance captures 

almost the entire variation generated by the design and model random processes. However, when the sampling fraction is not 

negligible, the model variance should be taken into account in order to construct valid inferences on model parameters under 

both randomization processes. 

 

Demnati and Rao (2002) extended their method to the scalar case of missing responses when weight adjustments for 

complete nonresponse and imputation for item nonresponse based on smooth functions of observed values, in particular ratio 

imputation, are used. A standard approach for handling multivariate missing items is to treat one variable at a time and 
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perform separate imputation. Although separate imputations make the data complete, it does not take advantage of 

correlations between observed items. Suppose that the respondent is unable to provide a value for each item but rather the 

respondent is willing to provide the total of two or more items. For example, in business surveys large enterprises are unable 

to provide value for each combination of industry and geography. However, the total revenue or expense at business level is 

readily available. In this situation, the separate imputation problem is further complicated by the availability of totals that 

have to be satisfied by the items. The total value of numerical items must be equal to the sum of its parts. Additionally, if only 

one item has a missing value then the imputation method should compute the correct value of this variable from the observed 

values of the other items and their total. This is an example of a situation where the imputation procedure should determine 

the missing value uniquely from the observed values.  

 

In section 2, we briefly review the Binder method for variance estimation, while in section 3, we give a brief account of the 

Demnati-Rao (DR) method for total variance estimation. In section 4, we consider estimating equations when calibration and 

imputation for item nonresponse have been used, and study estimators obtained as solutions to estimating equations. Finally 

in section 5, we give a preview of our recent work on multivariate imputation for general patterns of missingness under 

observed control totals. Our multivariate imputation method preserves automatically the observed items while satisfying 

observed control totals. 

 

2. BINDER’S PIONEERING APPROACH TO VARIANCE ESTIMATION 

 

Consider a finite population of N  units identified by a set of indices },...,,...,1{ NkP  . Usually, many variables (say M  

variables of interest) are under study for a given survey. Let T

Mkkk yy ),...,( 1y  be the vector of values of the variable of interest 

T

Myy ),...,( 1y  attached to unit k , and let TT

k

T

k

T

k

T

k ,...),,,( χItx  be the vector of auxiliary variables attached to unit k , where the 

superscript T  denotes the transpose of a vector or a matrix. We denote a typical variable of interest by y , and a typical 

auxiliary variable by x . Suppose that the model mean of the response 
ky  is specified by )()( βx

T

kkkm yE  , where  

T

pkkk xx ),...,( 1x  is a 1p  vector of explanatory variables, T

p ),...,( 1 β  is the 1p vector of model parameter and 
mE  denotes 

model expectation. Binder (1983) considered the finite population parameter 
Nβ  defined as solution to “census” estimating 

equation of the form 

 0A  )(),;(),,;( βvxβsy1βS  kkkxN y , (2.1) 

where 
N1  is the N-vector of 1’s, 

xA  is a Np  matrix, with thk  column 
kx , T

Nyy ),...,( 1y , 
k  denote the sum over all the 

population units, ),;( kky xβs  is a p -dimensional vector-valued function of 
ky and 

kx , and the known function ()v  allows for 

explicitly defined parameters. For linear and logistic regression models, ))((),;( βxxxβs
T

kkkkkk yy   , and 0)(βv . For the 

special case of the finite population total 
kk yY  , kkk yy ),;( xβs , N )(βv  and YN   . An estimator β̂  of 

Nβ  is defined 

by the design weighted estimating equation 

 0A  )(),;()(),),(;( βvxβsydβS  kkkkx ysds , (2.2) 
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where 
kkk sasd /)()(   denotes the sampling design weights attached to unit k , )(sak

 is the sample membership indicator 

variable for unit k , ))(( saE kpk   is the inclusion probability for unit k , 
pE  denotes expectation with respect to the sampling 

design, and T

N sdsds ))(),...,(()( 1d .  

 

Using a Taylor series linearization argument based on the first order approximation, Binder’s sampling variance of β̂  is 

given by 

 -1-1 ])([)(])([)ˆ( NNNp U
Var βJββJβ Σ , (2.3) 

where βy1βSβJ  /),,;()( xN A , and )(βUΣ  is the sampling variance of ),;()( kkkk ysd xβs . Binder’s estimator of )ˆ(βpVar  is 

 -1-1 ])ˆ(ˆ[)ˆ(ˆ])ˆ(ˆ[)ˆ(ˆ βJββJβ
UparV Σ , (2.4) 

where )ˆ(ˆ β
U

Σ  is a consistent estimator of )( NU
βΣ  and βydβSβJ  /),),(;()(ˆ

xs A . Binder (1983) gave regularity conditions 

for the validity of (2.3) and (2.4), and also showed how the results can be applied to some generalized linear models, 

including the logistic regression model. 

 

There are a number of competing estimators of the variance that are asymptotically equivalent to (2.4). Binder (1996) 

presented a “cookbook” approach which produces one of the most favored of those variance estimators. Consider the 

estimator ̂  of the finite population parameter 
N  which can be expressed as a smooth function  

 )ˆ,...,ˆ(ˆ
1 MYYg , (2.5) 

of estimated totals T

MYY )ˆ,...,ˆ(ˆ
1Y , where 

ikkki ysdY )(ˆ   is an estimator of the population total 
ikki yY  , Mi ,...,1 , and 

),...,( 1 MN YYg . Binder’ cookbook approach may be summarized as follows: 

1) Take the total differential i

i

M

i Yd
Yd

YYdg
d ˆ

ˆ

)ˆ,...,ˆ(ˆ 1  of ̂ . 

2) Replace the total differential ̂d  by deviations of estimators from their respective population parameters, e.g., ̂d  is 

changed to 
N ˆ , and Ŷd  is changed to YyYY  kkk sd )(ˆ ; and so on, to get 

 ))((
ˆ

)ˆ,...,ˆ(ˆ 1

iikkk

i

M

iN Yysd
Yd

YYdg
  . (2.6) 

3) Rewrite the result of step 2 given by (2.6) as Rsdz kkk  )(̂ , where R  does not depends explicitly on the design 

weight )(sd k
. 

4) Finally obtain the estimated variance as )ˆ(ˆ))((ˆ)ˆ( ZarVzsdarV pkkkp  , using the formula for the variance estimator of 

the estimated total Ẑ  under the specified sampling design, where 
kkk zsdZ )(ˆ  . 

 

The main difference of this formulation from the standard Taylor linearization method is that in the latter approach the partial 

derivatives are evaluated at their expected values before kz  is derived, and the unknown parameters in the resulting kz  are 

then replaced by their estimators. 
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3. DEMNATI-RAO LINERAZITAION METHOD 

 

3.1 The Method 

 

To motivate the DR method, we start with the case of ̂  defined as a smooth function (2.5) of estimated totals. DR express ̂  

and 
N  as )),((ˆ

ysf Ad  and ),( yNN f A1 , where 
yA  is a NM   matrix, with thk  column T

Mkkk yy ),...,( 1y , Nk ,...,1 , and 

))(( sEpN d1  . Note that ̂  is a function of both )(sd  and 
yA , but we drop 

yA  for simplicity and write ))((ˆ sf d . Taylor 

linearization of ̂  around Y  gives the approximation 

 )1)((~)ˆ(|ˆ/)ˆ(ˆ
ˆ 


sdzg kkk

T

N YYYY
YY

 , (3.1) 

where 
Nkk bfz

1
b

b |/)(~  and b  is a 1N  vector of arbitrary real numbers. Note that )ˆ)(ˆ/)ˆ(( YYYY  Tg  is equals to the right 

side of (2.6). The DR sampling variance estimator of ̂  is given by 

 ))(()ˆ( kkkDR zsd , (3.2) 

with 
)(|/)( skk bfz

db
b  . (3.3) 

Demnati and Rao (2004) gave justification of (3.1), (3.2) and (3.3). Note that DR do not first evaluate the partial derivatives 

of 
kbf  /)(b  at 

N1b   and then substitute estimates of the unknown components. The DR method, therefore, is similar in spirit 

to Binder’s cookbook approach. 

 

Estimation of the finite population parameters, )( yN Ahβ  , or model parameters, )(βhβ M
, under an assumed super-

population model on y  are often of interest, where β  is the 1p  super-population model parameter. We now consider a 

general formulation of the Demnati and Rao (2004, 2010) approach to deriving Taylor linearization variance estimators. This 

formulation will cover both finite population (or census) parameters, 
Nβ , and model parameters, 

Mβ .  

Based on a sample, an estimator, β̂ , is used to estimate both parameters 
Nβ  and 

Mβ . Under complete response, the estimator 

β̂ , obtained as the solution of the estimating equation given by (2.2) is often used as an estimator of the finite population 

parameter 
Nβ  defined as the solution to (2.1) and also the model parameter, 

Mβ , under an assumed model on y . 

 

Let TT

gk

T

k

T

kk ),...,,( 21 dddd   be a 1G  vector of random weights and 
ku  be a pG  vector of constants for Nk ,...,1  . Let 

kkk duU ˆ  be a linear estimator and, using an operator notation, let )(u  denote the estimator of variance of Û . We write β̂  

as )( dAf , where 
dA  is a NG  matrix with thk  column 

kd . The DR linearization variance estimator of )(ˆ
d

β Af  is simply 

given by )()ˆ( zβ  DR
, where )(z  is obtained from )(u  by replacing 

ku  by 
db

bz
b AA

A  |/)( kk f , where 
bA  is a NG  matrix 

of arbitrary real numbers with thk  column T

Gkkk bb ),...,( 1b . The choice of 
dA  depends on the random processes involved. 

Suppose first that the parameter of interest is 
Nβ  and we use the estimator given by (2.2). In this case, 1 Gg , 
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)(sdd kkk d , and )(u  is the estimator of ))(( sdVar kkk u  with ),;ˆ(])ˆ(ˆ[ -1

kkk y xβsβJz  , Suppose on the other hand, we are 

interested in the model parameter 
Mβ . In this case, 1g , pG  , ),;()( kkkk ysd xβsd  , and )(u  is the estimator of )( kkkVar du  

with -1])ˆ(ˆ[ βJz k
. 

 

The variance estimators associated with the finite population parameter 
Nβ  and the model parameter 

Mβ  are different. In the 

former case, we estimate the variance by an estimator of the design variance T

NNpp EVar )ˆ)(ˆ()ˆ( βββββ   of β̂ , while in the 

later case, we estimate the total variance 

 )ˆ()ˆ()ˆ( βββ pmpm EVarVarEVar  , 

where 
mVar  denotes the variance with respect to the model. It remains to derive 

db
bz

b AA
A  |/)( kk f , when β̂  is the solution 

of the estimating equation given by (2.2). One may use a fast approach to derive 
kz , which consists of two steps: a) first 

derive 
)(; |/)( sbkkp bf

d
bz   where ))((ˆ sf dβ  ; then b) isolate each component 

ikz  of 
kz  corresponding to component 

ikd  of 
kd , 

after approximating )ˆ(βVar  by ))(( ; sdVar kkpk z . Taking the derivative, we get 

 ),;ˆ()]ˆ(ˆ[|/)( 1

)(; kkskkp ybfz xβsβJb
db 



  . (3.4) 

It follows from (3.4) that, when the parameter of interest is the finite population parameter 
Nβ , the linearized variable is given 

by (3.4), while in the case where the parameter of interest is the model parameter 
Mβ , the linearized variable is given 

1)]ˆ(ˆ[  βJzk
. 

 

3.2 Calibration Estimator 

 

Calibration estimator, β
~

, is the solution to weighted estimating equations of the form 

 0A ),),(;( xs ywβS , 

with weights )ˆ()()( γt
T

kkk Fsdsw  , 

and satisfying the calibration constrains 

 0 )();()()),(;( γvγstdγS
γγγ kkk tsds , 

with k

T

kk Ft tγtγs
γ

)ˆ();(   and Tγv
γ

)( , where T

N swsws ))(),....,(()( 1w , T

qkkk tt ),...,( 1t  and T

qTT ),...,( 1T  is the vector of known 

totals of auxiliary variable T

qtt ),...,( 1t . Calibration estimators are widely used in practice. For example, the choice aaF  1)(  

gives the generalized regression (GREG) weights and )exp()( aaF   leads to raking ratio weights. Taking the derivative 

)(|/)( skbf
db

b   with ))((
~

sf dβ  , we get 

 })(ˆ),;
~

(){ˆ()]
~

(ˆ[ 1

; k

T

kk

T

kkp yF tsxβsγtβJz B 

 , (3.5) 

where ),;
~

()ˆ()(])ˆ()([)(ˆ 1

kk

T

k

T

kkk

T

kk

T

kkk yfsdfsd xβstγtttγts  
B , 

and aaFaf  /)()( . 
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When the parameter of interest is the finite population parameter 
Nβ , 1 Gg , )(sdkk d , and the linearized variable is 

given by (3.5), while in the case where the parameter of interest is the model parameter 
Mβ , 2g  pG  1 , )(1 sdd kk  , 

),;()(2 kkkk ysd xβsd  , and the components of the linearized variable TT

k

T

kk ),( 21 zzz   are given by 
k

TT

kk F tsγtβJz )(ˆ)ˆ()]
~

(ˆ[ 1

1 B  and 

)ˆ()]
~

(ˆ[ 1

2 γtβJz T

kk F . 

 

4. DEMNATI-RAO LINEARIZATION METHOD UNDER IMPUITATION 

 

Item nonresponse occurs in a survey when a sampled unit fails to provide responses to one or more of the survey items. A 

standard approach for handling missing items is to impute (i.e., fill in) an estimated value for each missing item using an 

imputation model in combination with an estimate, β
~

, of the model parameter β , calculated from the incomplete data. We 

introduce )(

}{

o

ky  as the set of observed items of the variables of interest for unit k , and )(

}{

o

kl  as the set of all observed values 

attached to unit k  related to both the variables of interest and to the auxiliary variables. In case of complete response from 

unit k  },...,{ 1

)(

}{ Mkk

o

k yyy , while under complete nonresponse )(

}{

o

ky , where   denotes the empty set. After imputation, it is 

common practice to treat the imputed values as if they were observed and then compute estimator θ
~

 of the parameter of 

interest θ  as in the complete response case, where θ  denotes either a finite population parameter 
Nθ  or a model parameter 

Mθ . Then it remains to assess the accuracy of the estimator θ
~

 in estimating the parameter θ . 

 

4.1 Conditional Mean Imputation Based Estimator 

 

Let )
~

;|(~ )(

}{

(*)
βl

o

kkmk yEy   be the conditional mean imputed value under the imputation model. Note that 
kk yy (*)~  when the item 

ky  is observed. The previous chapter covers the problem of estimating the variance of β
~

 solution of the weighted estimating 

function 0A ),),(;( xs ywβS  having zero mean for the thk  component at the true model parameter β , i.e., 0)},;({ kkm yE xβs . 

In this section estimating equations are used in the more general concept than estimating function which includes weighted 

log-likelihood estimating function as well as weighted least square estimating functions. A simple example of estimating 

equation is when one is interested in the overall mean, i.e., 0A ),~),(;( (*)

 ywθS s  with   (*)(*) ~),~;( kkk yy χθs  and 0)(θv , when 

)()( βx
T

kkkm yE  , where 
kχ  is the vector of auxiliary variables associated with (*)~

ky  and θ . The parameter of interest induced 

by the estimator 
~

 is either the finite population parameter solution to }),~),(;({ (*)
0A  ywθS sEE pr  or the model parameter 

solution to }),~),(;({ (*)
0A  ywθS sEEE prm , where 

rE  denotes expectation with respect to the response mechanism. Given that 

interest is in estimating the variance of θ
~

, the vector parameter β  used for imputation can be seen as a nuisance having 

0)},;({ kkyE xβs , where β
~

 is the incomplete-data based estimator solution to  

 0A ),),(ˆ;( xs ywβS , 

with )
~

/)(()(ˆ
kkkk swsw  , 

and α~  in )~(
~

αkk    is the solution to the logistic regression estimating equation 
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 0A ),),(;( Is δwαS
, 

where T

N ),...,( 1 δ , 
k  is the response indicator for 

ky , i.e., 1k  if 
ky  is observed and 0k  if 

ky  is missing,  

)(),;( kkkkk   IIαs , 0)(αv , )()1Pr( αIT

kkk logit  , and 
kI  is the vector of explanatory variables,  

 

After imputation, the estimator θ
~

 is obtained as the solution to 

 0A ),~),(;( (*)

 ywθS s . 

 

The imputed value )
~

;|(~ )(

}{

(*)
βl

o

kkmk yEy   can be rewritten as 

 )((*) ~)1(~ p

kkkkk yyy   , 

with the missing values replaced by predicted values given by 

 )
~

};{\|(~ )(

}{

)(
βl k

o

kkm

p

k yyEy  , 

available for all sampled  units. Note that )((*) ~~ p

kk yy   for non respondents and 
kk yy (*)~  for respondents.  

 

4.2 Random Imputation Based Estimator 

 

Suppose we can sample random values )(~ R

ky  from the conditional distribution with mean (*)~
ky  and variance )

~
,|( )(

}{ βl
o

kkm yVar , so 

that )(~ R

ky  are independent observations from the known conditional distribution ))
~

,|(,~( )(

}{

(*)
βl

o

kkmk yVaryf . Under random 

imputation, the estimator )(~ R
θ  is obtained as the solution to 

 0A ),~),(;( )(



Rs ywθS . 

We may write )(~ R

ky  as 
kk

R

k yy  (*))( ~~ , where (*))( ~~
k

R

kk yy   with 0)( kRE  , and 
RE  denotes expectation with respect to the 

random draw for imputation. In case of conditional mean imputation 0k . 

 

5. PREVIEW ON MULTIVARIATE CONDITIONAL IMPUTATION 

 

We now give a preview of the recent work of Demnati and Rao (2014) on variance estimation under multivariate conditional 

imputation for general patterns of missingness under observed control totals. Our multivariate imputation method preserves 

automatically the observed items while satisfying observed control totals. 

 

5.1 Missing Multivariate Items Situation 

 

Table 1 presents a simple example of a missing data situation for the first six units of a population of size 500N . Three 

variables and their total, labeled 
1y , 

2y , 
3y  and t , are observed, but some of the 

1y , 
2y , 

3y  and the t  values marked blank in 

shaded cells are missing. The complete population is generated from a 3-variate Normal distribution with mean T)15,10,5(μ , 

variance T)15,10,5(2 σ  and coefficient of correlation TT )9,.7,.5(.),,( 231312  ρ . The probabilities of response are set to .5 for 
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the four variables. The first unit of Table 1 provided complete response, while no information was received from unit 6. Note 

that the missing item from unit 2 can be determined exactly from the reported values. 

 

Table 1: Observed values 

Unit 
1y  

2y  
3y  t  

1 7.12 19.71 34.13 60.96 

2  -13.53 -7.74 -19.01 

3 5.83   30.77 

4    19.50 

5 10.04    

6     

      

 

5.2. Observed Data 

 

Consider the case where the data vector of interest T

Mkkk yy ),...,( 1y  for unit k  is not observed but instead we observe a 1km  

vector )(o

kl  which is a linear combination of 
ky , 

 
k

T

k

o

k yLl )( ,  

where 
kL  is a 

kmM   full rank column matrix. For example if we observed the subset ),( 31 kk yy  only, then the M2  matrix T

kL  

is given by 

 









00100

00001




T

kL . 

In some situations we observe the sum of some components of 
ky . For example, the sum of all components is obtained by 

using the M1  vector T

kL  given by   T

M

T

k 1L  11  , where 
M1  is the 1M  vector of 1’s.  

 

Note that )(o

kl  varies from one unit to another. The intention of the imputation process is to provide either a complete vector 

T

Mkkk yy )ˆ,...,ˆ(ˆ (*)(*)

1

(*) y  through conditional mean imputation or a complete vector TR

Mk

R

k

R

k yy )ˆ,...,ˆ(ˆ )()(

1

)( y  through random imputation as 

estimate for 
ky  given the observed information )(o

kl , with 
ik

R

ikik yyy  )((*) ˆˆ  if  item i  for unit k  is observed explicitly or 

implicitly. Our imputed value of 
ky given )(o

kl  will of course be some function of )(o

kl , say )( )(o

kly .  

 

5.3. Conditional Mean Imputation for Item Nonresponse 

 

Suppose that ),( )(o

kk ly  are jointly distributed variables and we wish to predict the 1M  vector 
ky  from the 1km  observed 

vector )(o

kl . One can in fact find the best estimator )( )((*) o

kly  in the sense of minimizing MSE over all estimators. Except for the 

case of multivariate normal distributions, the conditional expectation )( )((*) o

kly  could be a complicated nonlinear function of 

)(o

kl . So we restrict the class of estimators to the so-called linear estimators,  
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 )|()()( )(

;

)(1)((*)
)()()(

o

kkmLk

o

kk

o

kL Eo
k

o
k

o
kk

lyμlQQμly (o)lllly
  , (5.1) 

with )|()(])([ )(1)((*)
)()()()(

o

kkmLkm

o

kL VarVarMSE
k

o
k

o
k

o
k

o
kk

lyQQQyly
ylllly
  , 

where )( kmk E yμ  , )( )(

;

o

kmk
E lμ (o)l

 , ),( )(
)(

o

kkmCovo
kk

lyQ
ly

  and ),( )()(
)()(

o

k

o

kmCovo
k

o
k

llQ
ll

 . As shown by Goldberger (1962), the linear 

estimator given by (5.1) is the best linear unbiased predictor of 
ky  under the general linear model. The relative error, 

kre , of 

ky  based on the knowledge )(o

kl  can be defined by the diagonal elements of the matrix 

 )|(])([ )(1 o

kkmLkmk diagVardiagVar lyy
E . 

If )(

}{

o

kl  then )()|( )(

km

o

kkmL EE yly  , )()|( )(

km

o

kkmL VarVar yly   and 
Mk IE  , where 

MI  is the MM   identity matrix. On the other 

hand, if 
k

o

k yl )(  then 
k

o

kkmLE yly )|( )( , 0)|( )(o

kkmLVar ly  and 
Mk 0E  , where 

M0  is the MM    matrix of zero’s. 

 

Consider the case of 2M , where T

kkk yy ),( 21y , Nk ,...,1 , are independent observations generated from a bivariate normal 

distribution with means T),( 21 μ , variance  T),( 2

2

2

1

2 σ  and coefficient of correlation 
21 yy . We have 

21

2

2

2

1

2

21
2  yyt   for 

21 yyt  , 21

2

21
),(  yyiim tyCov   and ]2[/][ 21

2

2

2

1

22

2121
 yyjyyityi

  for ji  . Let 

jiyyjmjimji yVaryyCov  /)(/),(
21|   for ji  , and 2

| /),( timti tyCov   . Table 2 reports the imputed values and the relative 

errors given some patterns of missingness. 

 

Table 2: Imputed value, (*)

ky , and relative error given some response patterns when ),(~ 2 Σμy Nk
 

Pattern of Missing Data ),|( )(
βly

o

kkmE  )( kyre  

1y  
2y  t  (*)

1y  (*)

2y  )( 1yre  )( 2yre  

1 1 0 
1y  

2y  0 0 

1 0 1 
1y  

2y  0 0 

1 0 0 
1y  )( 111|22   ky  0 2

21
1 yy  

0 0 1 )(|11 tkt t    )(|22 tkt t    2

1
1 ty  

2

2
1 ty  

0 0 0 
1  

2  1 1 

  

 

The left panel of Table 3 shows all the true values related to Table 1. The middle panel shows the imputed values using 

conditional mean imputation, and the right panel shows the relative error in percentage due to imputation. The middle and 

right panels are obtained using our method studied in Demnati and Rao (2014), assuming the model parameter is known. 

Although the responses are generated independently with the same probability of response, it is seen from the right panel of 

Table 3 that correlations between variables makes approximate rather than fixed and exact response indicators compared to 

binary variable where the indicators take only zero or one. The unobserved item have a value that ranges in error between 

zero and one, and this value depends on the observed components and their relationship to the missing item. Although the 

probability of response is maintained the same for all variables, variable 3 has the lowest mean relative error. 
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Table 3 : True-, Imputed-values and Relative errors  

 

Unit 

 True values Imputed values Relative errors (%) 

t  
1y  

2y  
3y  (*)

1y  (*)

2y  (*)

3y  1100re  
2100re

 

3100re  

1 Y 7.12 19.71 34.13 7.12 19.71 34.13 0 0 0 

2 Y 2.26 -13.53 -7.74 2.26 -13.53 -7.74 0 0 0 

3 Y 5.83 12.93 20.01 5.83 13.21 19.73 0 5 2 

4 Y 5.98 6.59 6.93 3.61 6.48 9.41 46 13 2 

5 N 10.04 14.03 23.22 10.04 15.04 25.58 0 75 51 

6 N -.08 -3.97 -7.23 5 10 15 100 100 100 

            

Mean 3.54 10.87 12.89 4.14 11.36 15.80 20.6 15.5 13.35  

 

Demnati and Rao (2014) developed estimators and variance estimators in the case of conditional multivariate imputation for 

item nonresponse. 
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